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ABSTRACT. A constrained adjustment, in which a new survey is fit to existing control points, produces 
results that are at least as good as, and usually better than, the corresponding free adjustment. However, the 
proof of this property depends on the assumption that the uncertainty of the fixed control is much smaller than 
the uncertainties of the new survey. When this assumption is not fulfilled, the usual error-propagation equatio11s 
must be extended to take into account the effects of the uncertainties of the fixed control poi11ts. The opposite 
conclusion then can be reached: It is possible for adjusted observations to have greater errors than the observed 
values, so the constrained-adjustment procedure can indeed degrade a perfectly good survey and produce results 
that are worse than the free adjustment. 

Introduction 

C onstrained adjustments are quite common in 
the processing of survey data. Every time we 
adjust a new survey into an existing coordi

nate system by using existing control points, we are 
performing a constrained adjustment. 

The control network is intended to help surveyors 
place their surveys into some larger coordinate sys
tem, detect blunders in their observations, and con
trol the build-up of the effect of observational errors 
on the adjusted coordinates. However, there are cir
cumstances under which control networks become 
inadequate for their intended purpose. When this 
happens, surveyors may have difficulty fitting a new 
survey into the existing control network. Misclosures 
may be much larger than expected, and the difference 
between observed and adjusted values of observa
tions may be much larger than can be explained by 
observational error. 

Free and Constrained Adjustments 
In the majority of least-squares adjustment problems, 
the unknown parameters are the coordinates of phys
ical points. When coordinates are used, it is usually 
necessary to fix the coordinates of one or more points 
to define the coordinate system. The survey obser
vations alone are not sufficient. Angle observations 
are completely independent of any coordinate sys
tem, and therefore cannot tell us anything about ac
tual coordinates. Distance observations tell us only 
about the scale of a coordinate system, not its ori
entation or position. 

In an adjustment one can fix a coordinate by in
cluding an appropriate equation that specifies the value 
to be assigned to the coordinate, such as x1 = 0, y1 
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= 0. Such equations have the same form as regular 
observation equations, but do not represent actua l 
observations. They are sometimes called "direct ob
servations of coordinates" and sometimes called 
"constraint equations." 

Conventionally, we use the words " free adjust
ment" to describe an adjustment that uses just the 
number of constraint equations necessary to define 
the coordinate system, but no more. When more con
straint equations are used, we say that we have a 
"constrained adjustment." The wording is perhaps a 
bit misleading, since a free adjustment indeed can 
include constraint equations (those necessary to de
fine the coordinate system). Many authors prefer the 
phrase "minimal constraint adjustment" to denote a 
free adjustment; unfortunately, the use of this more 
descriptive phrase is not universal. When more than 
the minimum number of constraint equations are used, 
the resulting adjusted quantities are constrained not 
only to be in the proper coordinate system, but also 
to fit the additional constraints. 

Consider the horizontal survey shown in Figure 1. 
Suppose that points I and J are pre-existing marks 
and we run a traverse between them, setting the new 
marks 1 and 2 in the process. We measure the dis
tances I - 1, 1 - 2, and 2 - J, as well as the angles I -
1 - 2 and 1- 2- J. Thus we have five measurements 
with which to determine the four coordinates of the 
two new points - a redundancy of one. 

There are at least two common ways of treating the 
coordinates of the old points. In a horizontal network 
that contains distance observations, we need three 
quantities to define the coordinate system- two to 
define the origin and one for the orientation. Thus 
we might perform a free adjustment by constraining 
both coordinates of point I and one of the two coor
dinates of point J. Alternatively, we might constrain 
the two coordinates of point I and the azimuth from 
I to J. 

Free adjustments have the disturbing property that 
things move when they should stay fixed. In a free 
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and four "observations" of the coordinates of the two 
old points. We also have eight unknown parameters 
altogether-two coordinates for each of the four points. 
Let the total set of observation equations be written 
in standard notation as 

AX= L + V (1) 

where A is the design matrix (partial derivatives of 
the observations with respect to the parameters), X 
is the vector of unknown parameters (or corrections 
to approximate values of parameters), L contains the 
observed values (observed minus computed terms), 
and V is the vector of residuals. 

We partition these nine observation equations into 
three groups. Let 

Figure 1. Sample traverse. A1X = L1 + V1 be the five observa tion equations 
arising from the new survey. 

adjustment of the example network, point J is still 
free to move in one direction. This is not good, since 
the coordinates of point J have already been deter
mined and published. It might be preferable to make 
sure that the existing control stays fixed by constrain
ing both coordinates of both point I and point J in a 
constrained adjustment. 

Why a Constrained Adjushnent is Good 
Our intent is that the coordinates of the old points I 
and J serve to "control" the new survey. These old 
coordinates actually accomplish this in three different 
ways. First, they serve to define the origin and ori
entation of the new survey so that the coordinates of 
the new points 1 and 2 are in the same coordinate 
system as the old points. Second, they provide a means 
of detecting blunders in the new survey. Third, the 
constrained adjustment dampens the build-up of the 
effect of accidental error. 

The argument about constraining the effect of ac
cidental observational errors goes like this: The co
ordinates of the existing points are assumed to be 
"correct." If the free adjustment has a misclosure at 
point J, it must be because of errors in the new sur
vey. If the misclosure is large, we should look for a 
blunder in the observations. If it is within the toler
ance allowed for this type of survey, we distribute 
the misclosure. The resulting adjusted observations 
are more accurate than the observed values, and the 
adjusted coordinates from the constrained adjust
ment are more accurate than those from the free 
adjustment. 

We can show this mathematically. The constraint 
equations that are used to fix the coordinates of the 
control points can be treated as regular observations 
whose associated variance is zero. Thus we have nine 
observations altogether- five from the new survey 
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be the three observations of old co
ordinates (or functions of old coor-
dinates) that are used in the free 
adjustment to define the coordinate 
system. Clearly these equations do not 
involve the coordinates of the new 
points 1 and 2, so A2 will have zeroes 
in the columns corresponding to those 
coordinates in X. 

A3X = L3 + V3 be the remaining observation of an 
old coordinate (or function of an old 
coordinate). 

Let the covariance matrices associated with these 
three sets of observations be denoted :E11 :E2 , and :E3, 
respectively. Since the coordinates of the old control 
points are to be fixed, we will use :E2 = 0 and 1:3 = 
0. However, it will not hurt to carry these quantities 
symbolically. 

If we perform an adjustment with only the first two 
sets of observations, we obtain the free-adjustment 
estimate x- of X, with covariance matrix :E-. If we 
then sequentially add the third set, we obtain the 
updated (constrained) estimate . 

x+ =x- + :E-AI( :E3 + A3:E- AT) -I (L:~ - A3X-) (2) 

The covariance matrix of the updated estimate is 

:E+ = :E-- :E-Aj(:E3 + A 3:E -AI) - 1A 3 :E - (3) 

This is a well-known equation. With a change of no
tation, it is equation (4.118) in Leick (1990) or equa
tion (13.5a) in Mikhail (1976) . The second term on the 
right is a positive semidefinite matrix (whether or not 
:E3 = 0). Positive semidefinite matrices are analogous 
to numbers that are greater than or equal to zero. 
Since};+ is equal to :E- minus a positive semidefinite 
matrix, we say that "};+ :5 "};- . This means that the 
variance of any scaler function of X+ is less than or 
equal to the variance of the same function evaluated 
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at x-. Intuitively, it means that by adding new in
formation (the third set of equations) to an old set, 
we cannot make things worse, and generally make 
things better. 

In principle, it is possible to make a new observa
tion that gives no new information about the param
eters. For instance, we could make an additional 
observation of a parameter that is already fixed, such 
as one of the coordinates of point I in the example. 
This is why the second term on the right of equation 
(3) can be zero. In practice, this almost never hap
pens. In practice, almost all new observations (in
cluding redundant constraints) help. Sometimes they 
help only a little, but more often they make the re
sults much better. 

Why a Constrained Adjustment 
May Not Be So Good 

The previous section seems to prove that the con
strained adjustment is at least as good as, and may 
be much better than, the free adjustment. Further
more, the constrained adjustment uses all the infor
mation available to us, which is intuitively preferable 
to a procedure that ignores some data. Why, then, 
do we hear surveyors complain that they have to 
"distort" or "degrade" highly accurate GPS surveys 
to fit the existing NAD 83 control? 

The answer is that the error-propagation equations 
given above, and indeed all the error-propagation 
equations usually associated with least-squares ad
justments, depend on the assumption that the ad
justment was performed with a weight matrix that is 
inversely proportional to the covariance matrix of the 
observations (i.e., W = o-51:- 1

). This assumption does 
not hold when we fix the control points, since we 
then carry out the adjustment as if the variances of 
the coordinates of these points were all zero, while 
we know that these points are not known perfectly. 

Least-squares estimates are often said to be optimal 
estimates or, equivalently, minimum variance linear 
unbiased estimates. This means that the least-squares 
algorithm can be derived from the principle that the 
covariance matrix of the estimated parameters must 
be smallest among all possible linear unbiased esti
mates that satisfy the observation equations. The 
principle of minimum variance really goes to the heart 
of the matter-it says that we should pick the esti
mate that is the most accurate. For this reason, many 
analysts find the principle of minimum variance to 
be more satisfying than the principle that simply says 
to minimize the sum of. squares of the residuals. 
However, when the least-squares equations are de
rived from the principle of minimum variance, we 
must explicitly use a weight matrix that is inversely 
proportional to the covariance matrix of the obser
vations (Appendix C). 
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This means that least-squares adjustments using a 
weight matrix that is not inversely proportional to the 
covariance matrix of the observations do not have the 
minimum variance property. Since they are not op
timal, we can say that they are suboptimal. In spite 
of being less than optimal, such adjustments are done 
all the time. In fact, every constrained adjustment in 
which the control points are held fixed is suboptimal. 

Effect of Uncertainties of the 
Fixed Control 

The familiar equation 

l:xx = o-5N-t = o-a(ArWA) - 1 (4) 

which says that the covariance matrix of the param
eters is proportional to the inverse of the normal 
equations, does not apply without modification to 
constrained adjustments. The modified equation is 

l:xx = o-a(ATWA)-1 
+ (ATWA)- 1ATWBl:ccBTWA(ATWA) - 1 (5) 

where B contains the partial derivatives of the five 
new observations with respect to the four coordinates 
of the two control points I and J, and l:cc is the cor
rect 4x4 covariance matrix of the coordinates of the 
control points. Since this equation is not well known, 
a derivation is given in Appendix B. 

Equation (5) says that the 4x4 covariance matrix of 
the coordinates of the two new points is the sum of 
two terms. The first term gives the contribution of 
the variance of the five new observations, and might 
be called the internal error; the second gives the con
tribution of the real uncertainty of the fixed control, 
and might be called the external error. Thus we might 
write 

l:xx = l:;,, + l:u, (6) 

Equation (5) provides a mathematical explanation of 
how control networks become inadequate. The clas
sical concept, of course, is that the control network 
is supposed to be much more accurate than the new 
densification survey. Mathematically, this means that 
l:cc should be so small (in comparison with l:) that 
the second term in equation (5) is much smaller than 
the first term. As long as this is so, equation (4) can 
be used as a reasonable approximation of equation 
(5). 

This is indeed how classical control networks are 
developed. We expect a rough correlation between 
purpose and accuracy: Primary networks should be 
surveyed to first-order accuracy; secondary networks 
to second-order, etc. As long as this rough correlation 
holds, we can use equation (4) instead of (5). 

The concept falls apart if the accuracy of the new 
survey approaches or exceeds that of the existing 
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control points. For instance, if we try to fit a second
order traverse between two third-order points, the 
result is not what is expected of second-order work. 
The uncertainty of the new points must be computed 
by equation (5), not equation (4). Unfortunately, this 
is almost never done in practice, with the result that 
we often do not know how to describe the accuracy 
of such points. 

We also can look at what happens to the adjusted 
observations when the existing control points are held 
fixed. As shown in Appendix B, the covariance ma
trix of the adjusted observations also consists of two 
terms. For example, 

l;L"L" = o-5A(ATWA) - 1AT 
+ [A(ArWA)- 1ATW - I] 
x Bl:ccBr[A(ArWA) -wrw - I]r (7) 

If the second term in this equation vanishes, then we 
are left with the conventional expression 

Effects on Free Adjustments 
Equation (5) also holds for a free adjustment. We might 
perform a free adjustment by fixing only those co
ordinates necessary to define the coordinate system. 
Following the normal least-squares algorithm, we 
would compute the covariance matrix in equation (4). 
However, this only gives us the uncertainty in the 
adjusted coordinates that is due to the uncertainties 
of the new observations. It tells us how well the co
ordinates of the new points are known relative to the 
fixed control, but not how well they are known rel
ative to the datum as a whole. The second term in 
equation (5) accounts for the contribution of the un
certainty of the fixed control. 

A free adjustment can be shown to have the prop
erty that the columns of matrix 8 are linear combi
nations of the columns of matrix A, say B = AH for 
some matrix H. Then 

(8) and equation (5) becomes 

In this case, the difference between the covariance l:xx = o-5(A'fWA)- 1 + Hl:ccHT (11) 
matrix of the actual observations and that of the ad-
justed observations is Even more interesting, we then have 

l: - l:uL• = l: - o-5A(AfWA) -IAT 
(I - A(ATWA)- 1NW] 
x l:[I - A(AfWA) - 1ArWJT (9) 

This is a positive semidefinite matrix. Thus we can 
write 

(10) 

which says that the variance of an adjusted obser
vation is always at least as small as the variance of 
the actual observation (i.e., the adjusted observations 
are better). 

If the second term in equation (7) does not vanish, 
equation (10) does not necessarily hold. In fact, it is 
quite possible that the variances of the adjusted ob
servations could be larger than the variances of the 
corresponding actual observations. In other words, if 
we fix the control points, we might cause the ad
justed values of the observations to be worse than 
the actual observed values. 

The same arguments apply when we try to fit GPS 
vectors accurate to 1:1,000,000 into the existing NAD 
83 network, accurate to about 1:300,000. We can in
deed adjust these vectors while holding the existing 
control fixed, but the covariance matrix of the new 
points must then be computed by equation (5), not 
equation (4). The covariance matrix of the adjusted 
observations must be computed by equation (7), and 
equation (10) may not hold. 
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(A(ArWA)- 1ATW - 1]8 
= (A(ATWA)- 1ArWAH - AH) = 0 

so that the second term in equation (7) vanishes. This 
means that equation (10) holds for all free adjust
ments, irrespective of how the coordinate system is 
defined and of the uncertainty of the fixed control. 
The coordinates obtained in a free adjustment may 
be affected by the errors in the fixed control, but the 
adjusted observations are not. This is the sense in 
which these adjustments are "free." 

Practical Implications 
Many surveyors have an intuitive grasp of these 
mathematical results. They say that the constrained 
adjustment "distorts" their observations. This does 
not mean that the observed values are actually 
changed; it means that the adjusted values of the 
observations are more uncertain, and could, there
fore, have greater errors than the observed values. 
They rebel against this possibility; no one wants his 
or her work to be "degraded" by putting it through 
a process that can produce worse results than one 
started witk 

Thus many surveyors processing GPS vectors are 
rejecting constrained adjustments in favor of free ad
justments, for which equation (10) holds. Others are 
required by contract to fit their GPS surveys into the 
existing control network, but are uncomfortable with 
this requirement to do so. 
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The problems described here mathematically are 
indeed the trouble with constrained adjustments, and 
the trouble with the entire concept of a hierarchy of 
control networks in which the more accurate net
works control the lower-order surveys. From time to 
time, new technology comes along that allows new 
surveys to be performed with higher accuracy than 
the existing control network. When this happens, the 
extended error-propagation equations developed in 
this article must be used, with the unhappy result 
that equation (10) may not hold. 

This situation has arisen twice in this century. In 
the 1960s, the introduction of electronic distance 
measurement equipment allowed new surveys to be 
performed with greater accuracy than the existing NAD 
27. This eventually led to the creation of NAD 83. 
Now the same situation is occurring again. GPS sur
veys can be performed with greater accuracy than 
NAD 83. It is likely that this situation sooner or later 
will lead to the computation of a new continental 
datum. 
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Appendix A: Linear Error Propagation 
Let X be a vector of random variables and let Y = 
f(X) be a vector of functions of X. Assume that the 
covariance matrix l:xx is known. Then the covariance 
matrix of Y is 

(12) 

With a change of notation, this is equation (4.34) of 
Leick (1990) and equation (4.40) of Mikhail (1976). 

Appendix B: Effect of Unestimated 
Parameters 

In the example traverse shown in Figure 1, we have 
four points and eight coordinates altogether. Let us 
partition these into two sets. Let XN be the four co
ordinates of the two new points 1 and 2, and let Xc 
be the four coordinates of the two existing control 
points I and J. 

Mathematical Development 
The five observations in the traverse shown in Figure 
1 involve all eight unknowns. This set of five obser-

206 

1 

vation equations can be written 

AXN + BXc = L + V (13) 

where the covariance matrix associated with these 
five observations is l:. 

We also wish to add four constraint equations for 
the coordinates of the existing control points. We write 

X c = L c + Vc (14) 

where the covariance matrix associated with these 
four constraint equation·s is Lee . 

The to tal set of all nine equations is now 

(15) 

with covariance matrix 

(16) 

The most correct way to treat all these data is to 
perform the minimum-variance adjustment, which is 
an adjustment of the complete system (15) using a 
9x9 weight matrix that is inversely proportional to 
(16). Of course, this is almost never done, since it 
might result in changes to the coordinates of the ex
isting control points. 

To perform a constrained adjustment, we arbitrar
ily (i.e., without mathematical justification) set the 
residuals V c in (14) to zero. The result Xc = Lc is 
substituted into equation (13), which is rearranged to 
read 

AXN = L - BLc + V (17) 

This system of five observation equations in four un
knowns is adjusted with a weight matrix W that is 
inversely proportional to :E, yielding the estimate 

XN = (NWA)-IAfW(L - DLc) (18) 

Since the coordinates of the existing control points 
Xc should have been carried as unknowns but were 
not, they arc called "unestimated parameters." Even 
though these coordinates are not estimated in the 
constrained adjustment, we can still take account of 
their effect when we perform error propagation. 

The estimate in (18) has two sources of error- the 
errors in the five traverse observations L and the er
rors in the coordinates of the existing control Lc. Since 
these two groups of quantities were determined by 
different people at different times, we can reasonably 
assume that they are independent. Thus the total set 
of independent variables is 
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and the covariance matrix of this vector is given by 
(16). The partial derivatives are 

a~ = (axN axN) 
iJL iJL iJLc 

= ((ArWA)- 1NW -(ATWA)- 1ArWB) (19) 

Thus the covariance matrix l:xx of the estimate in (18) 
is 

:Exx = ((ArWA)- 1NW -(NWA)- 1ArWB) 

(
:E 0 ) ( WA(ArWA)-1 ) 

X 0 l:cc - B''WA(ATWA) - 1 

= (ArWA)-1ATWl:WA(ATWA)-1 
+ (AfWA)- 1ATWB:EccBTWA(AfWA)-1 

= <T6(ArWA)-t 
+ (ArWA)- 1ArWBl:ccBrWA(ArWA)- 1 (20) 

Similarly, the adjusted value of the five traverse ob
servations is 

L" = AXN + BLc 
= A(ArWA)- 1ArWL 

- [A(AfWA)- 1Arw - I]BLc (21) 

and the covariance matrix of the adjusted observa-
tions is · 

:EL•L• = O'~A(ArWA)-1AT 
+ (A(ArWA)-1ArW - I] 
X Bl:ccB'1A(ATWA}-1Arw - J]T (22) 

A Numerical Example 
To keep the numerical example small, we reinterpret 
Figure 1 to be a drawing of a leveling network. Points 
G and J are now assumed to be benchmarks in the 
national vertical network. The object of the new sur
vey is to determine the elevations of the new points 
1 and 2. Observed elevation differences are accu
mulated, setup by setup, between the marked points, 
resulting in the following observations: 

Obs. Model Value (m) Distance (km) 

11 H 1 - He 5.013 100 
12 H2 - HI -17.062 200 
13 H1 - H 2 42.771 100 

The published elevations of points G and J are He = 
123.113 meter and H1 = 153.805 meter. From the ad
justment of the national network, we have 

<T~ = 0.010 m2 

O'J = 0.010 
O'GJ = 0.0075 

or, in matrix form, 
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(
0.010 

l:cc = 0.0075 
0.0075) 
0.010 

The leveling is done to specifications that result in an 
uncertainty of elevation difference of 0.004\IK me
ters, where K is the length of the line in kilometers. 

Of course, in practice we are not usually given for
mal standard errors of the elevations of points in the 
national network. It would be even more unusual 
(almost unheard of) were we actually to be given a 
formal covariance between two elevations. Neverthe
less, such numbers do exist in principle, and the 
numbers given here are reasonable estimates of what 
might be obtained in a real network. Note that the 
elevation errors at points G and J have a significant 
positive correlation (0.75). This says that points close 
together share some of the same error sources. 

We select a value of the reference variance of <ru = 

0.0016 and compute the weights as 

Obs. Model Value (m) Distance (km) cr2 w 

11 H 1 - He 5.013 100 0.0016 1 
12 H2 - HI -17.062 200 0.0032 \12 
13 H1 - H2 42.771 100 0.0016 1 

The observation equations are then 

= (-1~:~!~) - (-~ ~)c~;:!~;) + (~:) 
42.771 0 1 v3 

This is in the form of equation (17}, so that we im
mediately identify 

L = ( -1~:~!;) 
42.771 

L = (123.113) 
c 153.805 

The weight matrix is 

w~G 
0 

D Yz 
0 

We compute 

(ATWA)- 1 (0.75 
0.25 

0.25) 
0.75 

and, by equation (18), 

XN = (H/1) = (128.1185) 
H11 111.0415 

The true covariance matrix is computed by equation 
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(20). We get 

( -1 0) 
0 -1 

and 

(
0 75 0.25) + (0.0090625 0.0084375) 

l:xx = 0·0016 o:25 0.75 0.0084375 0.0090625 

(
0.0012 0.0004) + (0.0090625 0.0084375) 
0.0004 0.0012 0.0084375 0.0090625 

(
0.0102625 0.0088375) 
0.0088375 0.0102625 

As expected, the uncertainty of the fixed control points 
dominates this expression. The uncertainties of the 
elevations of the new points are much larger than 
would have been expected from the accuracy with 
which the new survey was performed. The elevations 
of two new points are also highly correlated, since 
they share the uncertainties of the control points. 

The covariance matrix of the adjusted observations 
can be found by evaluating equation (22). This yields 

- 0.0016 ( 
3 

-
2 

-
1

) 0.010 (
2 

};L•L• - -
4
- - 2 4 -2 + ~ 4 

-1 -2 3 2 

4 2) 
8 4 
4 2 

( 

-0.0012 -0.0008 -0.0004) 
-0.0008 0.0016 -0.0008 
- 0.0004 -0.0008 0.0012 

(

0.00125 0.0025 0.00125) 
+ 0.0025 0.0050 0.0025 

0.00125 0.0025 0.00125 

(

0.00245 0.0017 0.00085) 
= 0.0017 0.0066 0.0017 

0.00085 0.0017 0.00245 

The uncertainty of the fixed control points, respon
sible for the second term, also dominates this expres
sion. Furthermore, remembering that the covariance 
matrix of the observed quantities is 

(

0.0016 0 0 ) 
}; = 0 0.0032 0 

0 0 0.0016 

we see that the second term causes the covariance 
matrix of the adjusted observations to be larger than 
the covariance matrix of the actual observations. 

Appendix C: Minimum Variance 
Adjustment (Gauss-Markov Theorem) 

Consider the linear model 

AX= L + V 
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in which the observations are unbiased and have co
variance matrix l:. We look for an estimate X of X 
that is 

1. Best (in the sense of minimum variance), so that 
Lxx = E[(x-x)(X-x)'~'] is a minimum 

2. Linear in the observations L, so that x= BL for 
some matrix B 

3. Unbiased, so that E[x] = x 

We must define what we mean by minimizing a 
covariance matrix. Since there is no strict ordering of 
matrices, we must minimize some scaler measure of 
the matrix. A common choice is to minimize the trace 
Trl:xx· 

Since the observations are unbiased, E[V) = 0 and 
E(L] = AX. Then 

E[X] = E[BL] = BE[L] = BAx 

and by the unbiased property, we must have BAx=x. 
Since this must hold irrespective of the value of X, we 
must have 

BA - I = 0 (23) 

If there are u unknown parameters X, (23) represents 
u2 separate equations. Let A be a matrix of u2 La
grange multipliers. Then 

Tr[(BA - I)A] 

represents the sum of all u2 equations in (23), each 
multiplied by a Lagrange multiplier. 

Furthermore, since X= E(X) = E[BL] = BE[L), we 
have 

X - X = BL - BE[L) = B(L - E[L)) 

so that 

l:xx = E[(X - X)(X - X)T] 
= BE((L - E[L)) (L - E[LJr]BT = B};BT (24) 

Now the problem is to minimize the augmented cost 
function 

<I> = Tr(Bl:Br) + 2Tr[(BA - I)A) (25) 

This is done by differentiating (25) with respect to B 
and L, and setting each set. of partial derivatives to 
zero. We get 

and 

o<D ( T ) oB = o => 2 I B + AA = o 

a <I> 
- = 0 ::? BA - I = 0 a A 

From (26) we obtain 

(26) 

(27) 
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and using (27) 

so 

and 

I 
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Thus 

(28) 

is the best linear unbiased estimator. As a final mod
ification, we can write l:- 1 = (1/u5} W in (28). The 
two appearances of u5 cancel each other, yielding the 
familiar form 

(29) 
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