Lecture 13 – "Geodetic Reference Systems"

GISC-3325 27 February 2012

Updates

- Read Chapter 8 for this Wednesday and next Monday.
- Be sure to select your article for the oral (and written report). Must be from Journal of Geodesy or GPS Solutions (both available through campus computers).
- Good article on datum transformations at: http://
 http://
 http://
 http://
 http://
 http://
 http://
 http://
 http://
 http://
 http://
 <a href="mailto:nycoordinate

3D Coordinate Systems

- Geodetic (Curvilinear) Coordinates
 - Latitude, longitude and ellipsoid height
 - Right-handed, earth-centered earth-fixed, positive east
- Geocentric (Cartesian) Coordinates
 - -X, Y, Z
 - Likewise, ECEF, right-handed,
 - Orthogonal

GPS vectors

Difference in geocentric coordinates.

```
C00011001 -387714127
                         7 -289669536
                                        23 -652818377
                                                         14 R0727ATXCCR0727AD387
C00011002 -376027966
                         7 -211837717
                                        21 -499460662
                                                         13 R0727ATXCCR0727AZ380
C00011003
             7427420
                         5 -230775488
                                        21 -437730506
                                                         12 R0727ATXCCR0727A6604
C00011004
          106489542
                         5 -146932779
                                        19 -252785019
                                                         11 R0727ATXCCR0727A6139
C00011006
          193199270
                           -79886176
                                        23 -104306881
                                                         12 R0727ATXCCR0727A5792
C00011005 204114913
                         7 -105324866
                                        24 -149901430
                                                         12 R0727ATXCCR0727A5870
C00010002
           380529109
                              2449912
                                             95609032
                                                          7 R0727ATXCCA0727AARP5
                                        14
                              0141101
                                              10010200
                                                         I B. NOTZ ( NANI DNOTZ ( NDZO)
```

Both difference in geocentric coordinates and changes in local geodetic horizon coordinates.

```
1) TXCC
295 DX
           38052.9122
                              38052.9139
                                                      -0.0017
                                                                 0.0003
                                                                          -6.0425
                                                                                      0.0007
296 DY
             244.9962
                                245.0011
                                                      -0.0049
                                                                 0.0010
                                                                          -4.7281
                                                                                      0.0015
                                                                                                          2) ARP5
297 DZ
            9560.9018
                               9560.8997
                                                       0.0021
                                                                 0.0006
                                                                           3.7777
                                                                                      0.0008 25.48
                                                                                                    2987A
    DN
           10810.5353
                             10810.5358
                                                      -0.0005
                                                                 0.0003
    DE
           37717.7317
                              37717.7328
                                                      -0.0010
                                                                 0.0002
                                                                                      Vector 13 Solution
                                                                                                                13
    DL
                                                       0.0011
                                                                 0.0004
                                                                                      Project ID =
               -6.0264
                                 -6.0319
    DU
                                                       0.0055
                                                                 0.0012
```

Local Geodetic Horizon (LGH)

- ECEF, right-handed, orthogonal, 3-D
- Origin at any point specified
 - N in meridian plane oriented toward N pole
 - U normal to ellipsoid at origin
 - E perpendicular to meridian plane
- Depending on software (or algorithm) values can appear as ENU or NEU.

LGH

$$e = r\cos(v\angle)\sin\alpha = r\sin(z\angle)\sin\alpha$$
$$n = r\cos(v\angle)\cos\alpha = r\sin(z\angle)\cos\alpha$$
$$u = r\sin(v\angle) = r\cos(z\angle)$$

$$\alpha = \arctan\left(\frac{e}{n}\right)$$

Geodetic azimuth.

$$r = (e^2 + n^2 + u^2)^{1/2}$$
 Text

Mark-to-mark slant range.

$$v \angle = \arcsin\left(\frac{u}{r}\right)$$

Vertical or zenith angle.

$$z\angle = \arccos\left(\frac{u}{r}\right)$$

Either vertical angle or zenith angles can be used.

Geodetic to Geocentric Coordinate Conversions

The conversion from curvilinear geodetic (λ, ϕ, h) to Cartesian (x, y, z) coordinates is given by the well-known equations:

$$\begin{cases} x \\ y \\ z \end{cases} = \begin{cases} (N+h)\cos\phi\cos\lambda \\ (N+h)\cos\phi\sin\lambda \\ [N(1-e^2)+h]\sin\phi \end{cases}$$

$$N = \frac{a\cos\phi}{\cos\phi\left(1 - e^2\sin^2\phi\right)^{\frac{1}{2}}},$$

(3)

$$\therefore N = \frac{a}{\left(1 - e^2 \sin^2 \phi\right)^{1/2}}.$$

Geocentric to Geodetic

$$(\lambda, \phi, h_e)_{a,f} = g(x, y, z)$$

$$h_e = \frac{\sqrt{x^2 + y^2}}{\cos \phi} - N$$

$$\phi = \arctan \left\{ \frac{z}{\sqrt{x^2 + y^2}} \left[1 - e^2 \left(\frac{N}{N + h_e} \right) \right]^{-1} \right\}$$

$$\lambda = \arctan \left(\frac{y}{x} \right)$$

$$N = \frac{a}{(1 - e^2 \sin^2 \phi)^{\frac{1}{2}}}.$$

Geocentric to Geodetic

- We use ellipsoid parameters (a, f⁻¹)
- Calculate preliminary values (set: h = 0)
 - $Lat_1 = atan((Z / sqrt(x^2+y^2))*(1/(1-e^2))$
 - $-N_1 = a / sqrt(1-e^2*sin(Lat_1)^2)$
 - $-h_1 = (sqrt(x^2+y^2)/cos(Lat_1))-N_1$
- We iterate using these starting values
- We stop iterating when the shift in ellipsoid height is within our accuracy goal.

2D-Coordinate Transformations

Given

$$-x = r * cos(\gamma)$$

$$-y = r * sin(\gamma)$$

Rotate coordinate system byΘ

$$-x' = r * cos(\gamma - \Theta)$$

$$-y' = r * sin(\gamma - \Theta)$$

Use following trig identities to solve:

$$-\cos(\gamma - \Theta) = \cos \gamma \cos \Theta + \sin \Theta \sin \gamma$$

$$-\sin(\gamma - \Theta) = \sin \gamma \cos \Theta - \cos \gamma \sin \Theta$$

Translation

 If we shift the origin we can update coordinates by merely adding/subtracting shift from matching coordinate.

$$-x' = x - tx$$

$$-y'=y-ty$$

Scale change

 We can scale coordinates to account for issues like m to ft.

$$-x'=s*x$$

$$-y'=s*y$$

Four-parameter transformation

- Combines rotations, translations and scale in one operation. Two-dimension case.
 - $-x' = s*(x*cos \Theta+y*sin \Theta) + tx$
 - $-y' = s*(-x*sin \Theta + y*cos \Theta) + ty$
- Matrix form is simpler

Three-Dimensional Transformation

- 7-parameters
 - one scale
 - three rotations along X,Y,Z axes
 - three translations in X,Y,Z

Euler matrices and 7-parameter

$$D = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \psi & \sin \psi \\ 0 & -\sin \psi & \cos \psi \end{bmatrix}$$

Matrix D for rotation on Z axis

Matrix C for rotation of Y axis

Matrix B for rotation of X axis

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}_{S} = \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix} + (1 + \Delta L) \begin{pmatrix} 1 & \omega_{3} & -\omega_{2} \\ -\omega_{3} & 1 & \omega_{1} \\ \omega_{2} & -\omega_{1} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{D}$$

Euler matrices

In \mathbb{R}^3 , coordinate system rotations of the x-, y-, and z-axes in a counterclockwise direction when looking towards the origin give the matrices

$$\mathsf{R}_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix} \tag{4}$$

$$\mathsf{R}_{\mathsf{y}}(\beta) = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix} \tag{5}$$

$$\mathsf{R}_{z}(\gamma) = \begin{bmatrix} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{6}$$

7-parameters to transform NAD83 to ITRF96

$$T_X(t) = 0.9910 \, m \tag{5}$$

$$T_Y(t) = -1.9072 m (6)$$

$$T_Z(t) = -0.5129 \, m \tag{7}$$

$$R_X(t) = [125033 + 258(t - 1997.0)](10^{-12}) radians$$
 (8)

$$R_Y(t) = [46785 - 3599(t - 1997.0)](10^{-12}) radians$$
 (9)

$$R_Z(t) = [56529 - 153(t - 1997.0)](10^{-12}) radians(10)$$

$$S(t) = 0.0 (unitless) \tag{11}$$

When transforming from NAD 83 to ITRF96,

Table 1. Transformation Parameters between Different Frames for $t_0 = 1997.00$

Parameter	Units	ITRF00→ITRF97	ITRF97→ITRF96	ITRF96→NAD 83
$T_x(t_0)$	meters	+0.0067	-0.00207	+0.9910
\dot{T}_x	meters/year	+0.0000	+0.00069	$+0.0^{a}$
	meters	+0.0061	-0.00021	-1.9072
$T_{y}(t_{0})$ \dot{T}_{y}	meters/year	-0.0006	-0.00010	+0.0a
$T_z(t_0)$	meters	-0.0185	+0.00995	-0.5129
\dot{T}_z	meters/year	-0.0014	+0.00186	$+0.0^{a}$
$\varepsilon_x(t_0)$	mas	$+0.0^{a}$	+0.12467	+25.79
$\dot{\boldsymbol{\varepsilon}}_{\scriptscriptstyle X}$	mas/year	$+0.0^{a}$	+0.01347	+0.0532
$\varepsilon_{y}(t_{0})$	mas	$+0.0^{a}$	-0.22355	+9.65
έ _y	mas/year	$+0.0^{a}$	-0.01514	-0.7423
$\varepsilon_z(t_0)$	mas	$+0.0^{a}$	-0.06065	+11.66
έz	mas/year	-0.02	+0.00027	-0.0316
$s(t_0)$	ppb	+1.55	-0.93496	+0.0a
· s	ppb/year	+0.01	-0.19201	+0.0a

Note: mas≡milliarc second. Counterclockwise rotations of axes are assumed positive; 1 ppb=10⁻³ ppm.

JOURNAL OF SURVEYING ENGINEERING @ ASCE / MAY 2004 / 51

^aValues set to zero by definition.

Table 2. Parameters Adopted for Transformation ITRF00→NAD 83 (CORS96)

Parameter epoch: $t_0 = 1997.00$	Definition	Units	Values at t ₀
-			
$T_x(t_0)$	x-shift	meters	+0.9956
$T_{y}(t_{0})$	y-shift	meters	-1.9013
$T_z(t_0)$	z-shift	meters	-0.5215
$\varepsilon_{x}(t_{0})$	x-rotation	mas	+25.915
$\varepsilon_{\rm y}(t_0)$	y-rotation	mas	+9.426
$\varepsilon_z(t_0)$	z-rotation	mas	+11.599
$s(t_0)$	scale	ppb	+0.62
\dot{T}_x	x-shift rate	meters/year	+0.0007
T_x \dot{T}_y \dot{T}_z	y-shift rate	meters/year	-0.0007
\dot{T}_z	z-shift rate	meters/year	+0.0005
$\dot{\varepsilon}_{\scriptscriptstyle X}$	x-rotation rate	mas/year	+0.067
έ _y	y-rotation rate	mas/year	-0.757
έz	z-rotation rate	mas/year	-0.051
Ś	scale rate	ppb/year	-0.18

Note: mas≡milliarc second. Counterclockwise rotation of axes are assumed positive; 1 ppb=10⁻³ ppm.