

Lecture 4 - Spherical Trigonometry and related topics

GISC-3325
24 January 2007

Another book recommendation

Latitude

How American Astronomers Soved the Mystery of Variation
By Bill Carter and Merri Sue Carter, Naval Institute Press, Annapolis, Maryland 2002

Bill Carter and Merri Sue Carter

Review

- Latitude and Longitude can uniquely and meaningfully describe where we are on the earth.
- We can also express positions on a sphere using 3-D Cartesian coordinates [$\mathrm{X} ; \mathrm{Y} ; \mathrm{Z}$] using simple geometric relationships.

Figure 2.-Meridians and parallels on the sphere.

Textbook error

- See page 23.
- Author misplaces the decimal point where he converts DMS to Decimal
- 31.315278 should be 3.1315278
- The answer to problem 2.2 is correct.

Homework Answer

- Problem: Use the position of station BLUCHER to determine the distance on a spherical earth (with radius $6,378,000 \mathrm{~m}$) from the equator.
- BLUCHER: 27-42-52.08857N

Both methods yield: 3,085,094 m

What about using INVERSE?

Output from INVERSE

```
Ellipsoid : GRS80 / WGS84 (NAD83)
Equatorial axis, a = 6378137.0000
Polar axis, b = 6356752.3141
Inverse flattening, 1/f = 298.25722210088
First Station : equator
    LAT = 0 0 0.00000 North
    LON = 97 1944.31265 West
Second Station : BLUCHER
    LAT = 27 42 52.08857 North
    LON = 971944.31265 West
```

Forward azimuth
Back azimuth
Ellipsoidal distance

```
FAZ = 0 0.0000 From North
```

FAZ = 0 0.0000 From North
BAZ = 180 0 0.0000 From North
BAZ = 180 0 0.0000 From North
S = 3066800.0198 m

```
    S = 3066800.0198 m
```

3,066,800 meters
10,061,660 feet (US Survey)
$1,905.6$ miles (statute)

Our result using a radius of $6,378,000$ meters is $3,085,094 \mathrm{~m}$

A difference of 18,294 m!
Why??

UNITS ARE IMPORTANT

US v INTL feet
STATUTE v NAUTICAL MILES

Feet are Feet?

- Conversions from meters to feet (and inverse) are complicated by two units of feet.
- U.S. Survey foot $=0.30480061 \ldots$ meters
- 1200/3937 meters (exactly)
- International foot $=0.3048$ meters (exactly)
- $2.54 \mathrm{~cm}=1$ inch

DMS <-> Radian

- To convert degrees to radians
- Convert DD MM SS.sssss to decimal
- Deg + min/60 + sec/3600
- Convert decimal degrees to radians
- Multiply by pi/180
- To convert radians to decimal
- decDeg = Radian value * 180/pi
- Deg = floor(decDeg)
- Min = floor((decDeg-Deg)*60)
- Sec = decDeg*3600-(Deg*60)-(Min*3600)

The meter

- There were great difficulties in commerce due to varying length (and other) units.
- The French Academy of Science was charged with standardizing the measurement unit.
- Original proposal was to use the period of a pendulum.
- Instead, in 1790 the Academy recommended that a meter unit be based on one-millionth of the distance from the Equator to the North Pole.

How well did they do?

Output from INVERSE

```
Ellipsoid : Clarke 1866 (NAD27)
Equatorial axis, a = 6378206.4000
Polar axis, b = 6356583.8000
Inverse flattening, 1/f = 294.97869821380
First Station :
        LAT = 0 0 0.00000 North
        LON = 100 0 0.00000 West
```

```
Second Station :
        LAT = 90 0 0.00000 North
        LON = 100 0 0.00000 West
```

| Forward azimuth | FAZ | $=0 \quad 0 \quad 0.0000$ From North |
| :--- | ---: | ---: | ---: | ---: |
| Back azimuth | BAZ | $=180 \quad 0 \quad 0.0000$ From North |
| Ellipsoidal distance | S | $=10001888.0430 \mathrm{~m}$ |

Ellipsoidal distance
$S=10001888.0430 \mathrm{~m}$

Output from INVERSE

```
Ellipsoid : GRS80 / WGS84 (NAD83)
Equatorial axis, a = 6378137.0000
Polar axis, b = 6356752.3141
Inverse flattening, 1/f = 298.25722210088
First Station :
    ----------------
        LAT = 0 0 0.00000 North
        LON = 100 0 0.00000 West
Second Station :
    LAT = 90 0 0.00000 North
    LON = 100 0 0.00000 West
```

Forward azimuth
Back azimuth
Ellipsoidal distance
FAZ $=000.0000$ From North BAZ $=18000.0000$ From North
$S=10001965.7292 \mathrm{~m}$

Evolution of the meter

- The original measurement was in error due to unknown magnitude of Earth's flattening.
- The unit was transferred to a platinum-iridium alloy bar kept in Paris (1874)
- The unit was updated in (1889) to a bar composed of 90\% platinum
- In 1960 a new definition was adopted that was based on krypton-86 radiation wavelength.
- Meter is the length of the path traveled by light in a vacuum during the time interval of:
- 299792458 s-1 (299792458 meters per sec)

Distance on a sphere

Compute radius of parallel circle by solving right triangle.

Figure 3.3 Looking down from North Pole on Parallel Circle.

Subtract longitudes to get angle. $\mathrm{s}=\mathrm{Rp}$ * angle (in radians) For this problem s=179,237 meters

Spherical Triangles

- Used in great circle navigation.
- Sides and angle are measured using arc measures
- Located on the surface of the sphere with sides formed by great circle arcs.
- N.B. great circles are planes through the center of the Earth
- The shortest distance between points.
- Not exactly

Spherical trigonometry

MAP PROJECTIONS—A WORKING MANUAL

Figure 5.-Spherical triangle.
$\cos c=\cos b \cos a+\sin b \sin a \cos C$

More damned definitions

- Normal section is a plane that contains the normal to the sphere at the occupied point and another point of interest.
- Horizontal angle is measured between two normal sections with respect to the instrument location.
- Azimuth is measured from the normal section containing the N pole clockwise to the normal section containing the other point
- All normal sections on the sphere intersect the sphere along great circle arcs.

Spherical Triangle

Problem in Text

Figure 3.8 Spherical Triangle Detail.

Distance Calculations

- Determine the co-latitudes (90d - latitude) at points A and B.
- These are the lengths C to B (side a) and C to A (side b).
- Compute the difference in Longitudes
- This is the angle at C
- As Law of Sines is ambiguous for angles in excess of 90d, we use Law of Cosines to solve for distance side c
$-\operatorname{Cos}(C)=\cos (A) \cos (B)+\sin (A) \sin (B) \cos (C)$.
- Distance $=r^{*}$ C (N.B. radius of great circle same as the sphere itself.

We can also calculate Azimuth

- Use cotangent formulas and the results from the spherical triangle computation. $-\tan \mathrm{A}=\sin \mathrm{C} /((\sin (\mathrm{b}) / \tan (\mathrm{a}))-(\cos (\mathrm{b}) \cos (\mathrm{C}))$
- Note that we must correctly account for the quadrant.
- Note as well that forward and reverse azimuths are not exactly 180 d different.

Other spherical Earth characteristics

- All meridians converge at poles.
- Azimuths of lines measured from one end to not equal values measured from the other end.
- Effect is especially pronounced on long E-W lines.
- Can be approximated as a function of the E-W distance, mean latitude and spherical radius.

$$
\theta^{\prime \prime}=\frac{\rho \bar{d} \tan \bar{\psi}}{R}
$$

Spherical excess

- The summation of all spherical angles exceed 180 degrees.
- It is proportional to the area of the spherical triangle.

$$
\varepsilon=\frac{b c \sin A}{2 R^{2} \sin 1^{\prime \prime}}
$$

