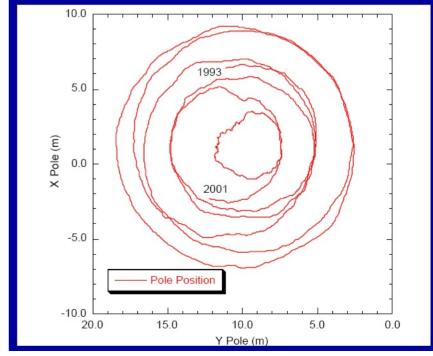
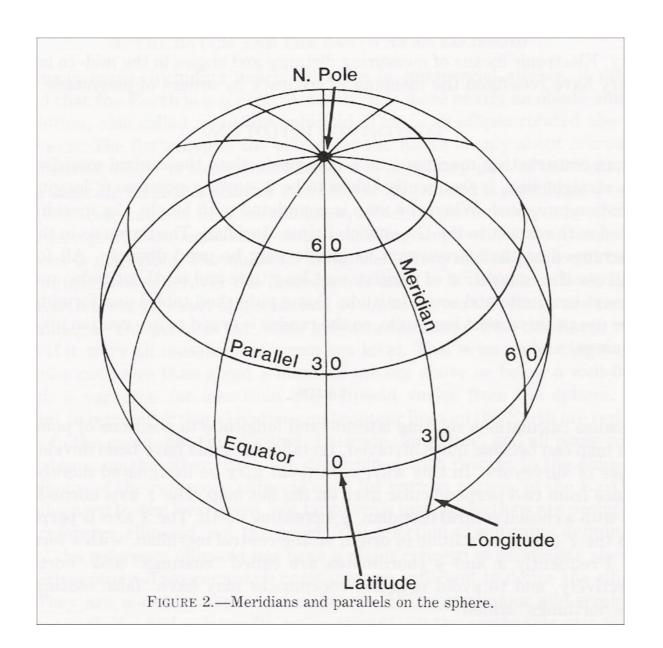

# Lecture 4 – Spherical Trigonometry and related topics

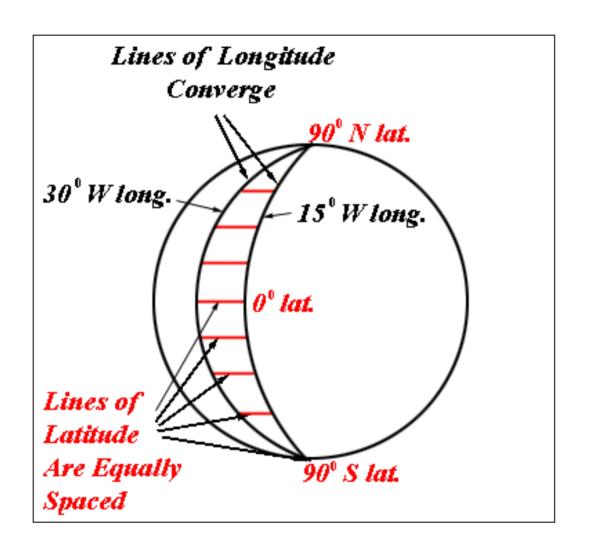





GISC-3325 24 January 2007

### Another book recommendation





By Bill Carter and Merri Sue Carter, Naval Institute Press, Annapolis, Maryland 2002



#### Review

- Latitude and Longitude can uniquely and meaningfully describe where we are on the earth.
- We can also express positions on a sphere using 3-D Cartesian coordinates [X;Y;Z] using simple geometric relationships.





### Textbook error

- See page 23.
- Author misplaces the decimal point where he converts DMS to Decimal
  - 31.315278 should be 3.1315278
- The answer to problem 2.2 is correct.

#### Homework Answer

- Problem: Use the position of station BLUCHER to determine the distance on a spherical earth (with radius 6,378,000 m) from the equator.
  - BLUCHER: 27-42-52.08857N

```
Editor - C:\MATLAB71\work\homework1_v2.m

| Stack | Base | Stack | Stack | Base | Stack | Stack | Base | Stack | Stack | Base | Stack | Stack | Base | Stack | Stack | Stack | Stack | Stack | Stack | St
```

Both methods yield: 3,085,094 m

# What about using INVERSE?

#### **Output from INVERSE**

```
Ellipsoid: GRS80 / WGS84 (NAD83)
Equatorial axis,
                          6378137.0000
                  b = 6356752.3141
Polar axis,
Inverse flattening, 1/f = 298.25722210088
First Station: equator
 LAT = 0 0 0.00000 North
 LON = 97 19 44.31265 West
Second Station : BLUCHER
 LAT = 27 42 52.08857 North
 LON = 97 19 44.31265 West
Forward azimuth
                   FAZ =
                                 0.0000 From North
Back azimuth
                    BAZ = 180 0 0.0000 From North
Ellipsoidal distance S =
                            3066800.0198 m
```

3,066,800 meters

10,061,660 feet (US Survey)

1,905.6 miles (statute)

Our result using a radius of 6,378,000 meters is 3,085,094 m

A difference of 18,294 m!

Why??



UNITS ARE IMPORTANT

US v INTL feet

STATUTE v NAUTICAL MILES

#### Feet are Feet?

- Conversions from meters to feet (and inverse) are complicated by two units of feet.
  - U.S. Survey foot = 0.30480061... meters
    - 1200/3937 meters (exactly)
  - International foot = 0.3048 meters (exactly)
    - 2.54 cm = 1 inch

#### DMS <-> Radian

- To convert degrees to radians
  - Convert DD MM SS.sssss to decimal
    - Deg + min/60 + sec/3600
  - Convert decimal degrees to radians
    - Multiply by pi/180
- To convert radians to decimal
  - decDeg = Radian value \* 180/pi
  - Deg = floor(decDeg)
  - -Min = floor((decDeg-Deg)\*60)
  - Sec = decDeg\*3600-(Deg\*60)-(Min\*3600)

#### The meter

- There were great difficulties in commerce due to varying length (and other) units.
- The French Academy of Science was charged with standardizing the measurement unit.
- Original proposal was to use the period of a pendulum.
- Instead, in 1790 the Academy recommended that a meter unit be based on one-millionth of the distance from the Equator to the North Pole.

# How well did they do?

#### **Output from INVERSE**

```
Ellipsoid : Clarke 1866 (NAD27)

Equatorial axis, a = 6378206.4000

Polar axis, b = 6356583.8000

Inverse flattening, 1/f = 294.97869821380

First Station :

LAT = 0 0 0.00000 North
LON = 100 0 0.00000 West

Second Station :

LAT = 90 0 0.00000 North
LON = 100 0 0.00000 West

Forward azimuth FAZ = 0 0 0.0000 From North
Back azimuth BAZ = 180 0 0.0000 From North
Ellipsoidal distance S = 10001888.0430 m
```



#### **Output from INVERSE**

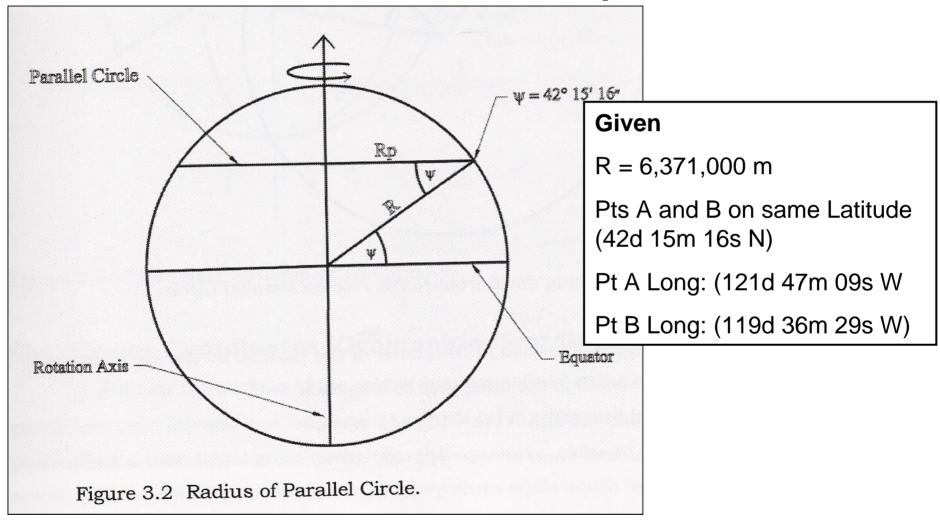
```
Ellipsoid: GRS80 / WGS84 (NAD83)
Equatorial axis, a = 6378137.0000
Polar axis, b = 6356752.3141
Inverse flattening, 1/f = 298.25722210088

First Station:

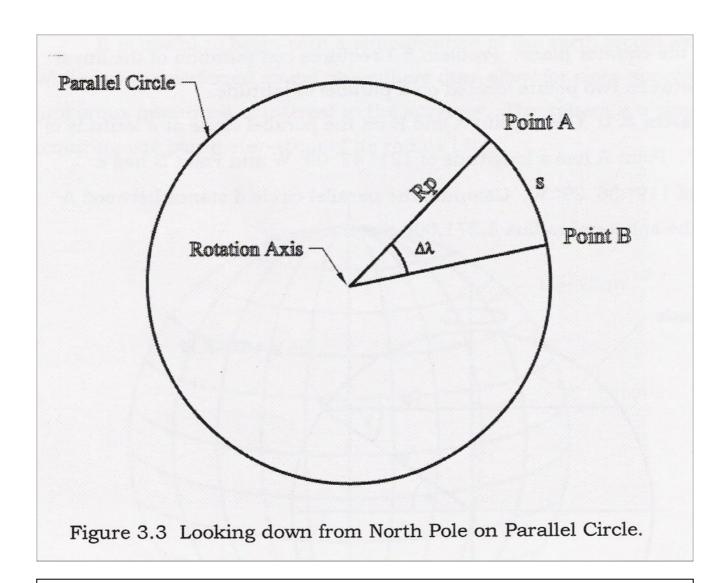
LAT = 0 0 0.00000 North
LON = 100 0 0.00000 West

Second Station:

LAT = 90 0 0.00000 North
LON = 100 0 0.00000 West


Forward azimuth FAZ = 0 0 0.00000 From North
Back azimuth BAZ = 180 0 0.00000 From North
Ellipsoidal distance S = 10001965.7292 m
```



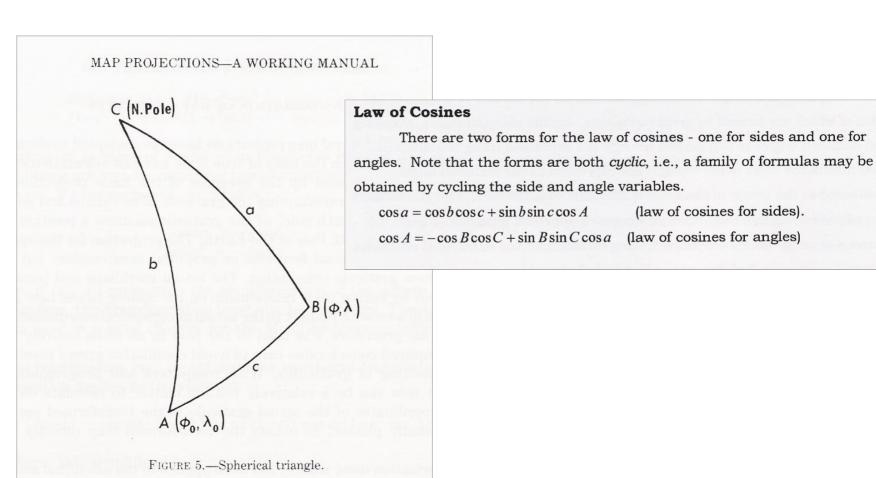

### Evolution of the meter

- The original measurement was in error due to unknown magnitude of Earth's flattening.
  - The unit was transferred to a platinum-iridium alloy bar kept in Paris (1874)
  - The unit was updated in (1889) to a bar composed of 90% platinum
- In 1960 a new definition was adopted that was based on krypton-86 radiation wavelength.
- Meter is the length of the path traveled by light in a vacuum during the time interval of:
  - 299 792 458 s-1 (299 792 458 meters per sec)

# Distance on a sphere



Compute radius of parallel circle by solving right triangle.

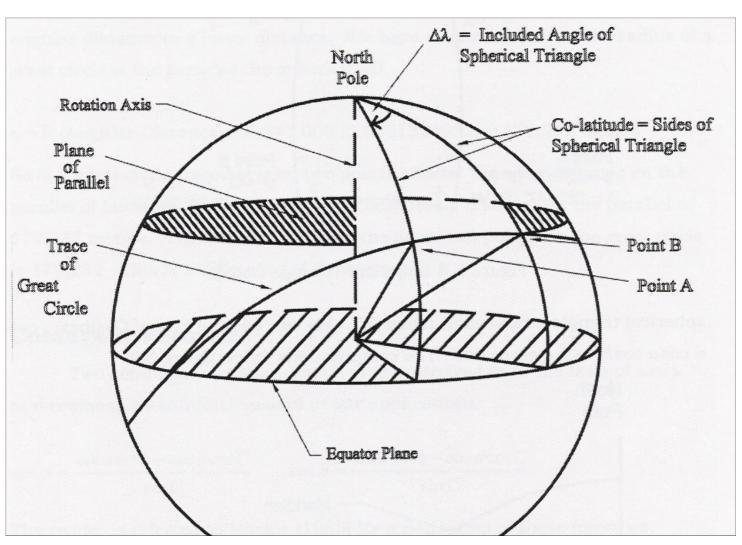



Subtract longitudes to get angle. s = Rp \* angle (in radians) For this problem s = 179,237 meters

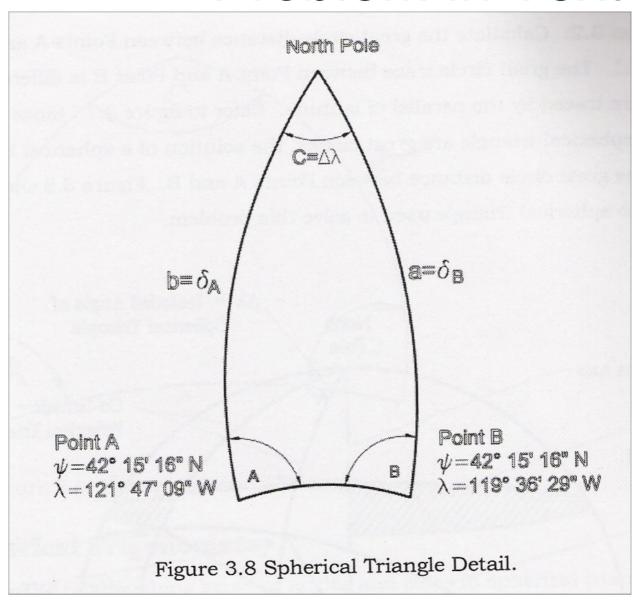
# Spherical Triangles

- Used in great circle navigation.
- Sides and angle are measured using arc measures
- Located on the surface of the sphere with sides formed by great circle arcs.
  - N.B. great circles are planes through the center of the Earth
- The shortest distance between points.
  - Not exactly

# Spherical trigonometry




 $\cos c = \cos b \cos a + \sin b \sin a \cos C$ 


#### More damned definitions

- Normal section is a plane that contains the normal to the sphere at the occupied point and another point of interest.
- Horizontal angle is measured between two normal sections with respect to the instrument location.
- Azimuth is measured from the normal section containing the N pole clockwise to the normal section containing the other point
- All normal sections on the sphere intersect the sphere along great circle arcs.

# Spherical Triangle



## Problem in Text



#### Distance Calculations

- Determine the co-latitudes (90d latitude) at points A and B.
  - These are the lengths C to B (side a) and C to A (side b).
- Compute the difference in Longitudes
  - This is the angle at C
- As Law of Sines is ambiguous for angles in excess of 90d, we use Law of Cosines to solve for distance side c
  - $\cos(C) = \cos(A)\cos(B) + \sin(A)\sin(B)\cos(C) .$
- Distance = r \* C (N.B. radius of great circle same as the sphere itself.

### We can also calculate Azimuth

- Use cotangent formulas and the results from the spherical triangle computation.
  - tanA = sinC/((sin(b)/tan(a))-(cos(b)cos(C))
- Note that we must correctly account for the quadrant.
- Note as well that forward and reverse azimuths are not exactly 180 d different.

# Other spherical Earth characteristics

- All meridians converge at poles.
- Azimuths of lines measured from one end to not equal values measured from the other end.
  - Effect is especially pronounced on long E-W lines.
- Can be approximated as a function of the E-W distance, mean latitude and spherical radius.

$$\theta'' = \frac{\rho \, \overline{d} \, \tan \overline{\psi}}{R}$$

# Spherical excess

- The summation of all spherical angles exceed 180 degrees.
- It is proportional to the area of the spherical triangle.

$$\varepsilon = \frac{bc \sin A}{2R^2 \sin 1''}$$

```
#aP2006
              0 0
                    0.00000000
                                   96 ORBIT IGb00 HLM IGS
            1
## 1356
            0.00000000
                         900.00000000 53736 0.0000000000000
                                 9 10 11 13 14 15 16 17 18
    29
                3
           1
                      5
                        24 25
                                27
                                         30
               21 22
                     23
                              26
                                   28
                                      29
            20
                                             n
                                                      Ω
+
           0
              Ω
                Ω
                   0
                      Ω
                         0
                            0
                               0
                                  0
                                    \mathbf{0}
                                       0
                                          0
                                             Ω
                                                Ω
                                                   Π
                                                      Ω
                                                        Π
                      0
                                                        Ω
             Π
                Π
                   0
                         0
                            0
                               0
                                  0
                                       0
                                          0
                                                Π
                                                   Π
                                                     Π
           0
                                    Ω
                                             Ω
             Ω
                Π
                   0
                      0
                         0
                            0
                               0
                                  0
                                    Ω
                                       0
                                          0
                                             0
                                                0
                                                   n
                                                     Π
                                                        Π
           0
             3
                         3
                            3
                              3
                                          3
                                                        3
                4
                   3
                      3
                                  3
                                    3
                                       3
                                             3
++
           3
                                                   4
                                                     3
             3
                      3
                            4
                               3
                                       3
                                          3
                3
                   3
                         3
                                  3
                                    4
                                             0
                                                0
                                                        Π
++
           4
                                                   0
                                                     Π
++
             Ο
                      Π
                         0
                            0
                              0
                                  0
                                       0
                                          0
                0
                   0
                                    Ω
                                             Π
                                                Π
                                                   Π
                                                        Π
           0
                                                     Π
++
              Π
                Π
                   Ω
                      Π
                         0
                            Ω
                               0
                                  Ω
                                       Π
                                          0
                                                Π
                                                   Π
                                                        Π
           0
                                    Π
                                                      Π
++
           Π
              Ω
                Π
                   Π
                      Π
                         Ω
                            Ω
                               n
                                  Ω
                                    Ω
                                       Π
                                          Π
                                                Π
                                                   Π
                                                      Π
l%f
    l%f
              0.000000000
                          0.0000000000 0.00000000000000
    0.0000000
%i
      Π
           0
               Π
                    0
                           0
                                  0
                                        0
                                               0
                                                        0
۱%i
      0
                           0
           0
               Π
                    0
                                  0
                                        0
                                               Π
                                                        0
/* FINAL ORBIT COMBINATION FROM WEIGHTED AVERAGE OF:
/* cod emr esa gfz jpl mit ngs sio
/* REFERENCED TO IGS TIME (IGST) AND TO WEIGHTED MEAN POLE:
/* CLK ANT Z-OFFSET (M): II/IIA 1.023; IIR 0.000
           1
                   0.00000000
   2006 1
              0
                0
   1 -15156.118389 18164.021963 -11829.887588
                                                 28.085474
IΡ
   2 20133.793284 -12517.384408 11531.263733
ĮΡ
                                                -23.264373
   3 -11366.447142 22473.599105 7788.691364
                                                 63.023929
   4 26109.950844 -5714.160584 1216.379808
                                                103.694692
P
P
   5 -11013.232261 -21731.530250 -10967.998519
                                                447.812380
   6 -10108.117501 -15606.106217 19125.583219
                                                170.870195
P
      16494.168125 -8125.986115 -18697.734751
                                                459.605468
P
                      50.071986
                                 6220.016726
                                                -51.940408
P
   8
      26002.033551
       -872.962985 -15641.294915 -21956.384902
                                                  1.771629
                                                 76.347737
       5783.888427 -15080.250565 20946.780855
  10
  11
       2597.964722 16510.768220 -20675.855544
                                                295.573462
```

| 2.10                                    | OBSERVATION DA       | ייי א   | c (cne)   |                | DIMEV '             | VERSION / TYPE                  |
|-----------------------------------------|----------------------|---------|-----------|----------------|---------------------|---------------------------------|
| teqc 2000Feb29                          | ODSERVATION DA       | 71W     |           |                |                     | VERSION / TIPE<br>RUN BY / DATE |
| MSWinNT 4.0 PentPro                     | പികുപുദ്ധ 5 വിത്യിൽ  | n95/98  |           |                | COMMEN              |                                 |
| BIT 2 OF LLI FLAGS                      | DATA COLLECTED       | IINDER  | A/S CONI  | DZ I<br>DITTON |                     |                                 |
| -Unknown-                               | DATA CODDECTED       | ONDEK   | A, B COM  | )111ON         | MARKER              |                                 |
| -Unknown-                               | -Unknown-            |         |           |                |                     | ER / AGENCY                     |
| -Unknown-                               | ASHTECH UZ-12        |         | 2001      |                |                     | TYPE / VERS                     |
|                                         |                      |         | 2621      |                |                     |                                 |
| -UnknownUnknown-                        |                      |         |           |                | ANT # / TYPE        |                                 |
| -726296.8700 -5598342.1900 2958518.6100 |                      |         |           |                | APPROX POSITION XYZ |                                 |
| 0.000.000.000                           | 0.0000 0.0000 0.0000 |         |           |                |                     | A: DELTA H/E/N                  |
| 1 1                                     | 10.0                 | 1212    | 100 LO    |                |                     | NGTH FACT L1/2                  |
| 7 L1 L2                                 |                      |         | D1 D2     | 2              |                     | PES OF OBSERV                   |
| SNR is mapped to H                      |                      | ralue [ | 1-9]      |                | COMMEN'             |                                 |
| L1: 1 -> 1; 90 -                        |                      |         |           |                | COMMEN'             |                                 |
| L2: 1 -> 1; 150 -                       |                      |         |           |                | COMMEN'             | Г                               |
| 2005 9 14                               | 13 37 1              | L5.000C | 1000      | GPS            | TIME O              | F FIRST OBS                     |
|                                         |                      |         |           |                | END OF              | HEADER                          |
| 05 9 14 13 37 15                        | .0000000 0 6G        | 5G30G1  | .0G18G260 | <del>3</del> 2 |                     |                                 |
| 138416.07353                            | 79208.19652          | 216582  | 15.946    | 21658212.3     | 382 :               | 21658216.095                    |
| -2389.228                               | -1861.736            |         |           |                |                     |                                 |
| 128476.45353                            | 92042.54252          | 200816  | 03.431    | 20081600.      | 703 :               | 20081604.871                    |
| -2125.583                               | -1656.298            |         |           |                |                     |                                 |
| 179425.29253                            | 29628.04052          | 195754  | 18.616    | 19575412.      | 115                 | 19575414.890                    |
| -2613.179                               | -2036.243            |         |           |                |                     |                                 |
| -154209.07053                           | -111215.70852        | 200945  | 61.440    | 20094559.9     | 983 :               | 20094564.353                    |
| 2887.546                                |                      |         |           |                |                     |                                 |
| -137048.39353                           |                      | 179033  | 65.528    | 17903361.      | 718                 | 17903367.264                    |
| 2422.747                                |                      |         |           |                |                     |                                 |
| 113885.28653                            |                      | 206327  | 66.604    | 20632762.      | 002 :               | 20632768.438                    |
|                                         | -1337.677            |         |           | 20002,02.      |                     |                                 |
| 1,10.000                                | 1007.077             |         |           |                |                     |                                 |