Classes 6 and 7 - Gravity and its importance to Geodesy

2 and 4 February 2010

Schedule for this week

- Exam 1 this Thursday during Lab period
- You are responsible for material in Chapters 1-4 in text, homework as well as all lectures and labs to date.
- It is open book and access to the Internet will be needed.

Natural Coordinates

Same Point in XYZ system

Geocentric v Geodetic Latitude

LLHs <-> XYZ

Geocentric relationship to XYZ

- One of the advantages of geocentric angles is that the relationship to XYZ is easy. R is taken to be radius of the sphere and H the height above this radius

$$
\begin{array}{ll}
\phi_{c}=\tan ^{-1}\left(Z / \sqrt{X^{2}+Y^{2}}\right) & X=\left(R+H_{c}\right) \cos \phi_{c} \cos \lambda_{c} \\
\lambda_{c}=\tan ^{-1}(Y / X) & Y=\left(R+H_{c}\right) \cos \phi_{c} \sin \lambda_{c} \\
R+H_{c}=\sqrt{X^{2}+Y^{2}+Z^{2}} & Z=\left(R+H_{c}\right) \sin \phi_{c}
\end{array}
$$

Problem with Geocentric

- Geocentric measures are easy to work with but they have several serious problems
- The shape of the Earth is close to an bi-axial ellipsoid (i.e., an ellipse rotated around the Z-axis)
- The flattening of the ellipsoid is $\sim 1 / 300$ (1/298.257222101 is the defined value for the GPS ellipsoid WGS-84).
- Flattening is (a-b)/a where a is the semi-major axis and b is the semi-minor axis.
- Since $\mathrm{a}=6378.137 \mathrm{~km}$ (WGS-84), $\mathrm{a}-\mathrm{b}=21.384 \mathrm{~km}$

Figure 3.5 Geodetic Coordinates $\{\phi, \lambda\}$

The System of Natural Coordinates

- Axes are defined by meaningful directions: the gravity vector and of the spin axis of the Earth.
- Gravity vector defines the up-down direction
- Orthogonal to a level surface.
- There is a difference between the gravity vector and normal to ellipsoid.

Geodetic Reference System 1980 (GRS80)

adopted by the International Association of Geodesy (IAG) during the General Assembly 1979. Principal parameters are:

parameter	symbol	value
defining constants		
equatorial radius of the Earth	a	6378137 m
geocentric gravitational constant (including the atmosphere)	GM	$3986005 \cdot 10^{8} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
dynamical form factor (excluding permanent tides)	J_{2}	$108263 \cdot 10^{-8}$
angular velocity of the Earth	w	$7292115 \cdot 10^{-11} \mathrm{rad} \mathrm{s}^{-1}$
derived geometrical parameters		
semiminor axis (polar radius)	b	6356752.3141 m
first excentricity	e^{2}	0.00669438002290
flattening	f	1:298.257222101
mean radius	R_{1}	6371008.7714 m
radius of sphere with same surface	R_{2}	6371007.1810 m
radius of sphere with same volume	R_{3}	6371000.7900 m
derived physical parameters		
normal potential at ellipsoid	U_{0}	$62636860.850 \mathrm{~m}^{2} \mathrm{~s}^{-2}$
Normal gravity at equator	$\mathrm{g} e$	$9.7803267715 \mathrm{~m} \mathrm{~s}^{-2}$
Normal gravity at pole	g_{p}	$9.8321863685 \mathrm{~m} \mathrm{~s}^{-2}$
wb 09/1999		Comments \& suggestions

Universal Law of Gravitation

- Newton formulated the law (1687) to reflect the attraction of two point masses separated by a distance.
- $f=G^{*}\left[\left(m^{*} m^{\prime}\right) / l^{2}\right]$
-(f is force, m and m ' are point masses, l is distance and G is Newton's gravitational constant)
- Currently accepted value for G
$-6.67259 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$

More mind-numbing detail...

- At latitude p, a conventional value of the acceleration of gravity at sea level is given by the International Gravity Formula,
$-g=978.0495\left[1+0.0052892 \sin ^{2}(p)-0.0000073 \sin ^{2}\right.$
$(2 p)] \mathrm{cm}$ per second per second (cm s-2).
- The mean Earth gravity is about 981000 mGal (the well-known $9.81 \mathrm{~m} / \mathrm{s}^{2}$), varies from 978,100 mGal to $983,200 \mathrm{mGal}$ from Equator to pole due to the Earth's flattening and rotation.

Gravitational Acceleration

- The magnitude of acceleration (b) due to the Earth's mass on the surface using a spherical geometric reference surface (R) is:
$-\mathrm{b}=\mathrm{GM} / \mathrm{R}^{2}$

$$
\begin{aligned}
\gg & b=398600 \cdot 5 e 9 / 6371000^{\wedge} 2 \\
b= & 9.8203
\end{aligned}
$$

Centrifugal Acceleration

- Direction is always perpendicular outward from the spin axis.
- It is a function of angular velocity of the Earth squared and the distance from the point of interest on the surface of the sphere to the axis of rotation.
- $\omega=7292115 \mathrm{e}-11$ rad sec-1
- We can compute this value as ratio of degrees over time.

Figure 2.5 Interaction of gravitation f and centrifugal acceleration f_{c}

Gravitational Attraction

- Is the vector sum of gravitational and centrifugal acceleration.
- The actual acceleration of gravity varies from place to place, depending on latitude, altitude, and local geology.
- By agreement among physicists, the standard acceleration of gravity (gn) is defined to be exactly 9.80665 meters per second per second (m s-2), or about 32.17405 feet per second per second.

Magnitude of centrifugal acceleration

- Varies from equator to poles.
- Compute magnitude by velocity squared times the distance from the point of interest to the spin axis.

```
>> omega = 7292115e-11;
>> = 6371000;
>> CentrifAccelEquator = omega^2*R
CentrifAccelEquator =
    0.0339
```


Gravity and Geodesy

- Defines a plumb line (local vertical) defined by gravity.
- Gravity also serves as an important reference surface. It is the level surface that is perpendicular to the plumb line at all points.

Gravitational Potential

- Magnitude of the potential is the work that must be done by gravity to move a unit mass from infinity to the point of interest.
- Is dependent on position within the gravitation field.

Equipotential Surfaces

- Surface having constant gravity potential.
- Also known as level surfaces or geopotential surfaces.
- Surfaces are perpendicular at all points of the plumb line (gravity vector).
- Potential field is a scalar field from which the vector gravity field can be found.
- A still lake surface is an equipotential surface.
- It is not horizontal but curved.

Properties of equipotential surfaces

- They are closed continuous surfaces that never cross one another.
- They are formed by long radius arcs. Generally without abrupt steps.
- They are convex everywhere.

$$
\int_{\infty}^{p} \vec{f} d \vec{l}
$$

\vec{f} is the force dependent upon position within the force field. $d \vec{l}$ is an element of distance. Note that the potential is expressed in units of work and that it is path independent.

Figure 4.2 Positions of Points P and Q in a Force Field.

The change in potential (work required to move) from point P to point Q within a force field is:

Figure 2.6 Level Surfaces, Plumb Lines, Geoid

Gravity defines the plumb line - the local vertical

What is Geodesy?

- "Geodesy is the discipline that deals with the measurement and representation of the earth, including its gravity field, in a threedimensional time varying space."
- definition adopted by the National Research Council of Canada in 1973. (Vanicek, P.K. and Edward Krakiwsky, E.(1986) Geodesy: The Concepts. Elsevier).

Another definition

- "The task of geodesy is the determination of the potential function $W(x, y, z)$ " i.e. of the gravity potential of the Earth.
-By Heinrich Bruns (1878)
- Both definitions indicate the linkages between positioning and gravity field determination.

Integrated Geodesy

- Also called "Operational Geodesy"
- Integrated geodesy is a method in which a wide variety of surveying measurements are modeled in terms of geometric positions and the earth's geopotential.
- Both geometric and gravimetric data are simultaneously estimated using Least Squares.

Absolute Gravity Meters

How does it work?

- Motion of a test mass free falling in a vacuum is interferometrically measured with respect an inertial reference.
- Controlled carriage assembly releases the test mass (a corner cube retroreflector mounted in an aluminum housing).
- The inertial reference is another corner cube retroreflector mounted on a force feedback long period (60sec) seismometer.
- Non-gravitational forces are minimized (air drag, electrostatics, and eddy current damping).

Gravity change

- FG5 accuracy:
-Instrument 1.1 $\mu \mathrm{Gals}$
-Environmental: $1.5 \mu \mathrm{Gals}$
-Observational error: $\sim 0.4 \mu$ Gals
-RMS of above at instrument height (131 cm): $1.9 \mu \mathrm{Gals}$
-RMS with relative transfer to mark or excenter: 3 to $8 \mu \mathrm{Gals}$
- $+3 \mu \mathrm{Gals}$ corresponds to
- -1 cm elevation change
- $+71 / 2$ foot rise in water-table
- GPS to resolve ambiguity
- Can also measure
- magma insertion
- sea level change (with tide record comparisons)
- glacial ice mass change

ERIE CU (11-12 Aug 98)
$M A G-1$, Reference $\mathrm{Ht}=100 \mathrm{~cm}$

Figure 3

CHURCHILL, MANITOBA

- ICE-3G Theoretical ($-1.11 \mu \mathrm{Gal} / \mathrm{yr}$)

ESUSE LNUX EEntertainment ENews Eintemet Search EReference Baps and Directions EShopping People and Companies

return to NGS.HOME PAGE

Surface Gravity Prediction

Surface gravity is predicted by interpolation based on observed values. Observed gravity data in the National Geodetic Survey's Integrated Data Base are referenced to the International Gravity Standardization Net 1971, which is an absolute gravity datum.

ENTER: Latitude, Longitude and height above Mean Sea Level

The entry of mean sea level (topographic) height is NOT mandatory - the prediction of surface gravity value is still possible (frequently with diminished accuracy).
[may enter latitude and longitude in three formats:

1. degrees, minutes and seconds ($\mathbf{x x x} \times \mathrm{xx} \times \mathrm{x} . \mathrm{xxx}$)
2. degrees and minutes ($\mathbf{x x x} \times \mathrm{xx} . \mathrm{xxx}$)
3. degrees ($\mathbf{x x x . x x x x x}$)
may enter height in meters or feet:
4. in meters: $\mathbf{x x x x} . \mathrm{xxx}^{2}$
5. in feet : $x \times x x . x x x$ FT (MUST include FT or ft for feet !)

Note: decimals can be keyed commensurate with the entry's precision, but are not required; MUST include one or more blanks between entry fields]

```
ENTER Latitude :
\(\square\)
ENTER Longitude:\square (positive WEST)
ENTER Sea level height:
```

When the site's sea level height is unknown DO NOT ENTER ZERO, but leave the entry field BLANK :
Let's go Clear

Be patient after clicking on "Let's go", data base access and computations may take a few seconds.

It is possible that the surface gravity prediction may not succeed; there could be numerous reasons for this, including position and height entry errors. In such case an error code is returned; questions concerning the gravity prediction process may be mailed to NGS

```
The predicted gravity is given in units of 'milligals':
    1 gal = 1 cm/seo
    1 kilogal = 1000 gal
    1 milligal = 1/1000 gal
Questions concerning the gravity prediction process may be mailed to NGS
Latitude: 27 42 52.08857
Longitude: 097 19 44.31265
MSL Height: 5
Predicted gravity: 979129 +/- 2 milligals
```


NAVD 88 Gravity Computations

Use this program to compute NAVD 88 surface gravity as a function of latitude and longitude.
Gravity is computed by the method used to compute gravity for the NAVD 88 adjustment.
This is also the method used to compute the Modelled Gravity which shows on NGS data sheets.
Computations may be performed for a specific geographical location or for a file of input points.

The NAVD 88 gravity may differ from the measured gravity at a point,
or from the gravity value produced by the Surface Gravity tool in this toollcit by a few milligals.
This is because:

- The interpolation method used in computing NAVD 88 gravity may introduce some smoothing of measured values.
- NAVD 88 gravity is computed using a gravity model determined at the time of the NAVD 88 adjustment. New or revised values added to the NGS gravity data base since that time may affect the Surface Gravity computations but will have no effect on the NAVD 88 gravity.

Compute NAVD 88 gravity for a specific location:
Enter North Latitude and West Longitude below.
All values must be entered as integers (no decimals).
The NAVD 88 gravity model is valid only within the coterminous United States.

Compute NAVD 88 Gravity for a Single Location

Output from NAVD Gravity Computations

NGS program grav_into (formerly GETGRAV) version: 2.3 date: 01/04/25

Latitude longitude
2742520971944
gravity(gals) std. dev. (mgal) 979.12802 .7

```
The predicted gravity is given in units of 'milligals';
    1 gal = 1 cm/\mp@subsup{sec}{2 ('gal' in honor of Gallleo)}{\mathrm{ (gal }}\mathrm{ ('g}
    1 kilogal = 1000 gal
    1 milligal = 1/1000 gal
```

Questions concerning the gravity prediction process may be mailed to HGS
Latitude: $27 \quad 42 \quad 52.08857$
Longitude: 09719 44. 31265
MSL Height: 5
Predicted gravity: 979129 +/- 2 milligals

Output from NAVD Gravity Computations

NGS program grav_info (formerly GETGRAV) version: 2.3 date: 01/04/25
latitude longitude gravity(gals) std. dev.(mgal)

Which model to use?

- NAVD88 - Modeled Gravity uses a model developed for the NAVD88 adjustment rather than current gravity values.

Review of Height Systems

- Helmert Orthometric
- NAVD 88

$$
\begin{aligned}
& H=\frac{C}{\bar{g}}=\frac{C}{g+0.0424 H} \\
& \bar{g}=g-\left(\frac{1 \partial \gamma}{2} \partial h+3 \pi G \rho\right)_{H} H
\end{aligned}
$$

- local gravity field (\bar{g})
- single datum point
- follows MSL

Earth's Gravity Field from Space

- Satellite data was used for global models
- Only useful at wavelengths of 700 km or longer
- Lower wavelength data from terrestrial or marine gravity of varying vintage, quality and geographic coverage

Gravity

- Static gravity field
- Based on long-term average within Earth system
- Temporally changing component
- Motion of water and air
- Time scale ranges from hours to decades.
- Mean and time variable gravity field affect the motion of all Earth space vehicles.

Geoid

Even after time-averaging, Local Mean Sea Level does not correspond to a level surface.
ζ is induced by permanent ocean circulation patterns, salinity, temperature and wind set-up, which vary geographically.

- The equipotential surface of the Earth's gravity field which best fits, in a least squares sense, global mean sea level.

$h($ Ellipsoid Height $)=$ Distance along ellipsoid normal $(Q$ to $P)$ $N\left(\right.$ Geoid Height) $=$ Distance along ellipsoid normal (Q to $\left.P_{0}\right)$ $H\left(\right.$ Orthometric Height) $=$ Distance along Plumb line $\left(P_{0}\right.$ to $\left.P\right)$

GEOID 2009

Leveling Issues

- Height
- The distance measured along a perpendicular between a point and a reference surface.
- Raw leveled heights
- Non-unique. Depending on the path taken a different height will be determined for the same point. They have NO physical relevance.

Leveled Height vs. Orthometric Height

$\Delta h=$ local leveled differences
$\Delta H=$ relative orthometric heights
Equipotential Surfaces

Observed difference in orthometric height, ΔH, depends on the leveling route.

Adjusted Geopotential Numbers/Elevations by Line

/Part: L26356/5			$\begin{array}{r} \text { SSN } 4: \\ \text { Designation } \end{array}$	mark floated,	mark constrained,	ssN\#: mark floated $\&$ constrained		
Mark ID	SSN	PID						
0	1377*	HU0596	W 105			2.5267	2. 5783	
1	1376*	HU0597	MOORES AZ MK			2.3772	2. 4257	
2	1378*	AI7161	Y 107 RESET			2.2908	2.3376	
3	1379	HU0600	X 105			2. 6299	2. 6836	
4	1380*	AJ8000	TULLS			2. 1135	2. 1567	
5	1381*	HU0602	z 105			2.7154	2.7709	

Dynamic Heights

- Takes the geopotential number at a point and divides it by a constant gravity value.
- The constant value used in the US is the normal gravity value at 45 degrees N latitude
-980.6199 gals

CC area Dynamic Heights

```
1 National Geodetic Survey, Retrieval Date = JANUARY 31, 2007
AC8464 ***********************************************************************
AC8464 TIDAL BM - This is a Tidal Bench Mark.
ACB464 DESIGNATION - 877 5792 A TIDAL
AC8464 PID - AC8464
AC8464 STATE/COUNTY- TX/NUECES
AC8464 USGS QUAD - CRANE ISLANDS NW (1975)
AC8464
AC8464
AC8464
MC8464* NAD 83(1986)- ccin 38 0.5. 
AC8464
AC8464
AC8464
AC8464
AC8464
AC8464 VERT ORDER - FIRST CLASS II
```

NAVD 88 and dynamic heights differ by only 1 mm at this station.

Dynamic Heights

```
DATABASE = Sybase ,PROGRAM = datasheet, VERSION = 7.42
1 National Geodetic Survey, Retrieval Date = JANUARY 31, 2007
```



```
AC5717 DESIGNATION - 7850
AC5717 PID - AC5717
AC5717 STATE/COUNTY- TX/JEFF DAVIS
AC5717 USGS QUAD - MOUNT LOCKE (1978)
AC5717
AC5717 =CURRENT SURVEY CONTROL
AC5717
AC5717* NAD 83(1993)- 30 40 49.77247(N) 104 00 54.30121(W) ADJUSTED
AC5717* NAVD 88 - 2026.545 (meters) 6648.76 (feet) ADJUSTED
AC5717
AC5717 X - -1,330,007.642 (meters) COMP
AC5717 - -5,328,393.026 (meters) COMP
AC5717 Z - 3,236,502.804 (meters) COMP
AC5717 LAPLACE CORR- -0.25 (seconds) DEFLEC99
AC5717 ELLIP HEIGHT-
AC5717 GEOID HEIGHT-
        2005.36 (meters) (10/23/00)
            -21.19 (meters)
        2023.109 (meters) 6637.48 (feet) COMP 
AC5717 DYNAMIC HT -
    AC5717 MODELED GRNV- 978,871.0 (mgal) NAVD 88
    AC5717 HOR717 HORZ ORDER - B
    AC5717 VERT ORDER - FIRST CLASS II
    \C5717 ELLP ORDER - FOURTH CL\SS II
    NAVD 88=2026.545 m
    DYN Hght= 2023.109
Difference = 3.436 m
```


This utility computes a dynamic height

based on the input NAVD 88 orthometric height and gravity value
For more information about dynamic heights see file dynamic ht.doc

Enter a surface gravity value in units of mgal or a latitude and longitude to have the program automatically interpolate a gravity value.

The latitude and longitude on the NAD 83 datum has the following permissable formats:

- degrees and decimals (xx. xcxas)
- degrees, minutes and decimals ($\mathrm{xx} \times \mathrm{xx} \times \mathrm{xcx}$)
- degrees, minutes, seconds and decimals ($\mathrm{xz} \times \mathrm{xx} \mathrm{xz} \mathrm{xxxx}$)

The input elevation should be in meters and decimals.

Press 'Submit' to compute a dynamic height for the above input.

Retom to GEODETIC TOOLKIT DAGE Retum to NGS HOME PAGE

Dynamic Height Problems

- Dynamic height corrections applied to spiritleveled height differences can be very large (several meters) if the chosen gravity value is not representative for the region of operation.

Orthometric correction

- Occurs because equipotential surfaces are not parallel.
- In general, not parallel in a N-S direction but they are parallel in an E-W direction.
- It is computed as a function of mean orthometric height and latitude of section.

Leveled v Ortho. Height Diffs

- Due to non-parallelism of level surfaces the differences between published NAVD 88 points do not correspond to the leveled height difference.
- Therefore the subtraction of the published NAVD 88 heights on the NGS datasheets will NOT agree with the leveled difference.
- This is problem mostly in high elevations.

Compute the expected leveled height differences between two NAVD 88 bench marks

This utility uses NGS program LVL DH to compute height differences
between two NAVD 88 bench marks
by one of the two methods below.

For more information about the computation see file $\underline{\mathrm{lvl}} \mathrm{dh} . \mathrm{doc}$

1. RETRIEVE BY VALUES...

Clear or overwrite the Orthometric Height and Gravity Value for the two MARKS below,
then click Submit to compute results.
$\begin{array}{rr}\text { Ortho. Ht. }= & \frac{\text { MARK \#1 }}{500.000} \\ \text { Gravity }= & \frac{\text { MARK \#2 }}{978222.000} \\ \text { Submit } & \frac{978225.444}{\text { Clear } \quad \text { Sample }}\end{array}$
2. RETRIEVE BY PIDs...

An example from Colorado

- The difference between published NAVD 88 heights is 402.156 m .
- The leveled difference is 402.085 m .

```
Level Height Difference Computation
    LVL_DH Program
                Version 2.1
```


Reminder

- You are responsible for the material listed as REQUIRED ADDITIONAL READING in the Class 5 section of the web page.

```
Class 5: 29 January 2009
Earth's Gravity Field - Part 1
startLecture
lecture
REQUIRED ADDITIONAL READING
    -Gravitv info from USGS
    - Excellent summary of different height systems
```


http://www.ngs.noaa.gov/GRAD-D

The official page of the GRAV-D project

\mathbf{G} ravity for the \mathbf{R} e-definition of the \mathbf{A} merican $\mathbf{V}_{\text {ertical }} \mathbf{D}$ atum
A NOAA contribution to the
Global Geodetic Observing System (GGOS) component of the Global Earth Observation System of Systems (GEOSS)
bserving System)
What is GRAV-D?
Download the GRAV-D plan.
ervation System of Systems)
GRAV-D briefing

Gravity field and steady-state Ocean Circulation Explorer

Abstract

Description The GOCE gradiometer contains three pairs of proof masses positioned at the outer ends of three 50 cm long orthogonal arms. Because of their different position in the gravitational field they all experience the gravitational acceleration of the Earth slightly differently. The three axes of the gradiometer allow the simultaneous measurement of six independent but complementary components of the gravity field.

Facts and figures

Full name: Gravity field and steady-state Ocean Circulation Explorer Launch: March 2009

Launcher: Rockot (with Breeze-KM upper stage) by Eurockot Launch Services GmbH

Launch site: Plesetsk Cosmodrome, Russia
Mission control: European Space Operations Centre (ESOC), Darmstadt, Germany

Number of instruments: 3

Nominal life: 20 months
Mission cost: €340 million (including launcher and operations)
Orbit: about 260 km altitude, polar, Sun-synchronous
Mass: 1100 kg
Size: 5.3 m long, about 1 m body diameter
Propulsion tank: 40 kg of xenon
Geoid accuracy: 1-2 cm vertically with 100 km spatial resolution
Gravitational acceleration at Earth's surface is about $9.8 \mathrm{~m} / \mathrm{s}^{2}$, varying from a minimum of $9.788 \mathrm{~m} / \mathrm{s}^{2}$ at the equator to a maximum of 9.838 $\mathrm{m} / \mathrm{s}^{2}$ at the poles.

The six accelerometers (three pairs in three orthogonal directions) are some 100 times more sensitive than any previously flown in space.

Planning and construction of the GOCE spacecraft involved 45
European companies led by Thales Alenia Space.

crace
 Measuring Earth's Mass in Motion

Gravity Recovery And Climate Experiment

GRACE

How does GRACE work?

- Motion of two satellites differ because they are at different positions in space.
- When the lead SV approaches a higher gravity mass it accelerates as it moves beyond it decelerates.
- Distance changes between SVs is measured precisely.

Geoid Model from Earth Orbiting Space Vehicles (pre-GRACE)

GRACE 111 days of data

GRACE 363 days of data

