Lecture 15: Vertical Datums and a little Linear Regression

For Geoid96

GISC-3325
4 March 2010

Update

- Reading for next two classes
- Chapter Seven (lots of lovely computations)
- An extra-credit opportunity is available. Details are posted to class web page.
- Other ideas should be discussed with Instructor.

What is a vertical datum?

- Example: North American Vertical Datum of 1988 (NAVD 88)
- Definition: The surface of equal gravity potential to which orthometric heights shall refer in North America*, and which is 6.271 meters (along the plumb line) below the geodetic mark at "Father Point/Rimouski" (NGSIDB PID TY5255).
- Realization: Over 500,000 geodetic marks across North America with published Helmert orthometric heights, most of which were originally computed from a minimally constrained adjustment of leveling and gravity data, holding the geopotential value at "Father Point/Rimouski" fixed.

Vertical datums in the USA

- NGVD 29
- National Geodetic Vertical Datum of 1929
- Original name: "Sea Level Datum of 1929"
- "Zero height" held fixed at 26 tide gauges
- Did not account for Local Mean Sea Level variations from the geoid
- Thus, not truly a "geoid based" datum

Global Sea Level

NGVD 29

- Defined by heights at 26 tide stations in the US and Canada.
- Tide Gages connected to the vertical network by leveling.
- Water-level transfers were used to connect leveling across the Great Lakes.
- Used normal orthometric heights
- scaled geopotential numbers using normal gravity

First and Second-order Level network as of 1936

Problems with NGVD 29

PROBLEMS WITH THE PRESENT NGVD 29 SYSTEM

Problems	Approx. Amount (Meters)	Corrections Surveys	
Adding $1,225 \mathrm{~K} \mathrm{~km}$ to Old 75 K km Network Adjust.			
Constraining Tide Gage Heights to NGVD 29	0.3		X
Lack of Gravity Data in NGVD 29 Adjustment	0.7		
Refraction Errors	1.0	X	X
Post-Glacial Uplift	0.5	X	X
Subsidence Crustal Motion From Earthquakes	0.6	X	X
Frost Heave of Bench Marks Destroyed Bench Marks	6.0	X	X
	0.5	X	

- NAVD 88
- North American Vertical Datum of 1988
- One height held fixed at "Father Point" (Rimouski, Canada)
- ...height chosen was to minimize 1929/1988 differences in USGS maps
- Thus, the "zero height surface" of NAVD 88 wasn't chosen for its closeness to the geoid (but it was close...few decimeters)
- NAVD 88 (continued)
- Use of one fixed height removed local sea level variation problem of NGVD 29
- Use of one fixed height did open the possibility of unconstrained cross-continent error build up
- But the $\mathrm{H}=0$ surface of NAVD 88 was supposed to be parallel to the geoid...(close again)

Why isn't NAVD 88 good enough?

- NAVD 88 suffers from use of bench marks that:
- Are almost never re-checked for movement
- Disappear by the thousands every year
- Are not funded for replacement
- Are not necessarily in convenient places
- Don't exist in most of Alaska
- Weren't adopted in Canada
- Were determined by leveling from a single point, allowing cross-country error build up
- NAVD 88 suffers from:
- A zero height surface that:
- Has been proven to be $\sim 50 \mathrm{~cm}$ biased from the latest, best geoid models (GRACE satellite)
- Has been proven to be ~ 1 meter tilted across CONUS (again, based on the independently computed geoid from the GRACE satellite)

The Geoid

- Approximate level of geoid mismatch known to exist in the NAVD 88 zero surface:

NAVD 88

- Datum based on an equipotential surface
- Minimally constrained at one point: Father Point/Rimouski on St. Lawrence Seaway
- 1.3 million kilometers of level data
- Heights determined for 585,000 permanent monuments

Father Point/Rimouski

Elements of NAVD 88

- Detected and removed height errors due to blunders
- Minimized effects of systematic errors in leveling data
- improved procedures better modeling
- Re-monumentation and new leveling
- Removal of height discrepancies caused by inconsistent constraints.

NAVD 88 NEW ADJUSTMENT PROJECT

बत

Figure 4. Contour map depicting height differences between NAVD 88 and NGVD 29 (units $=\mathrm{mm}$).


```
&HO277 DESIGNkTION - R 587
\HO277 PID - גHO277
גHO277 STATE/COUNTY- TX/SAN PATRICIO
AHO277 USGS QUAD - GREGORY (1975)
dHO277
AHO277
גHO277
```



```
2HO277
2HO277
גHO277 DYNAMIC HT - 10.648 (meters) 34.93 (feet) COMP
גHO277
&HO277
גHO277 VERT ORDER - FIRST
\lambdaHO277
kH0277.The horizontal coordinates were scaled from a copographic map and have
\lambdaHO277.an estimated accuracy of
&HO277
kH0277. The orthometric heighe wa:
kH0277. and adjusted in June 1991
&HO277
kH0277. The geoid height was dete,
&HO277
kH0277.The dynamic height is com uted by dividing the NAVD 88
kH0277.geopotential number by th normal gravity value computed on the
kHO277.Geodetic Reference System of 1980 (GRS 80) ellipsoid at 45
kH0277.degrees latitude (g = 980 6199 gals.).
&HO277
kH0277.The modeled gravity was i terpolated from observed gravity values.
&HO277
AHO277: North East Units Estimated kccuracy
&H0277:SPC TX S - 5,246,950. 413,910. MT (+/- 180 meters Scaled)
&HO277
&HO277
&H0277
AHO277 NGVD 29 (72/72/92) 10.854 (m) 35.61 (f) ADJ UNCH (%)
```


New vertical datum to be based on h (ellipsoid heights) and N (gravimetric geoid model).
Remember: $\mathbf{h}-\mathbf{H}-\mathbf{N}=\mathbf{0}$ plus errors

Vertical Datum Transformations

- First choice: Estimate heights using original leveling data in least squares
- Second choice: Rigorous transformation using datum conversion correctors estimated by adjustment constraints and differences
- Third option: VERTCON

Linear Regression

- Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data.
- A linear regression line has an equation of the form $\boldsymbol{Y}=\boldsymbol{m X} \boldsymbol{+} \boldsymbol{b}$, where X is the explanatory variable and Y is the dependent variable. The slope of the line is \boldsymbol{m}, and \mathbf{b} is the intercept (the value of \boldsymbol{y} when $\boldsymbol{x}=0$).

\mathbf{x}	\mathbf{y}
1.0	2.6
2.3	2.8
3.1	3.1
4.8	4.7
5.6	5.1
6.3	5.3

$$
\begin{aligned}
& m=\frac{n \sum(x y)-\sum x \sum y}{n \sum\left(x^{2}\right)-\left(\sum x\right)^{2}} \\
& b=\frac{\sum y-m \sum x}{n}
\end{aligned}
$$

$$
r=\frac{n \sum(x y)-\sum x \sum y}{\sqrt{\left[n \sum\left(x^{2}\right)-\left(\sum x\right)^{2}\right]\left[n \sum\left(y^{2}\right)-\left(\sum y\right)^{2}\right]}}
$$

Results in Excel

http://phoenix.phys.clemson.edu/tutorials/excel/ regression.html


```
    ***ITRF 00***
HOUSTON RRP2 (TXHO), TEXAS
Retrieved from NGS DataBase on 03/17/03 at 14:14:49.
```

Antenna Reference Point (ARP) : HOUSTCN RRP2 CORS ARP
PID $=$ DF4379

TXHU: Daily minus Published ITRF

ITRFOO POSITION (EPOCH 1997.0)
Computed in Mar., 2003 using 13 days of data.

$X=-524578.515 \mathrm{~m}$	latitude $=$294645.91022 N $\gamma=-5515562.145 \mathrm{~m}$$\quad$ longitude $=0952558.76631 \mathrm{H}$

Z = $3149180.614 \mathrm{~m} \quad$ ellipsoid height $=12.001 \mathrm{~m}$

ITRFOO VELOCITY
Set equal to vel of hous Mar., 2003.
$V X=-0.0145 \mathrm{~m} /$ gr \quad northvard $=-0.0045 \mathrm{~m} / \mathrm{yr}$
$V Y=0.0096 \mathrm{~m} /$ gr \quad eastward $=-0.0153 \mathrm{~m} / \mathrm{yr}$
$\mathrm{VZ}=-0.0099 \mathrm{~m} / \mathrm{yr} \quad$ upvard $=-0.0120 \mathrm{~m} / \mathrm{yr}$

	A	B	C	D	E	F	G	H	I
1									
2	Segment	DA	DH	n	$\Delta(\mathrm{m})$	DA* $\left.{ }^{\text {(}} \mathrm{m} 2\right)$	DA(obs)	DA^2	V(m)
3	150-300	149.9929	149.9899	1	0.0030	0.44997870	149.9929	22497.87005	-0.0007
4	300-150	149.9929	149.9905	1	0.0024	0.35998296	149.9929	22497.87005	-0.0013
5	150-600	449.9990	449.9916	1	0.0074	3.32999260	449.999	202499.1	-0.0004
6	600-150	449.9990	449.9849	1	0.0141	6.34490590	449.999	202499.1	0.0063
7	150-1800	1649.9959	1649.9600	1	0.0359	59.23485281	1649.9959	2722486.47	0.0119
8	1800-150	1649.9959	1649.9728	1	0.0231	38.11490529	1649.9959	2722486.47	-0.0009
9	300-600	300.0061	300.0003	1	0.0058	1.74003538	300.0061	90003.66004	0.0001
10	600-300	300.0061	299.9984	1	0.0077	2.31004697	300.0061	90003.66004	0.0020
11	300-1800	1500.0030	1499.9739	1	0.0291	43.65008730	1500.003	2250009	0.0071
12	1800-300	1500.0030	1499.9906	1	0.0124	18.60003720	1500.003	2250009	-0.0096
13	600-1800	1199.9969	1199.9866	1	0.0103	12.35996807	1199.9969	1439992.56	-0.0076
14	1800-600	1199.9969	1199.9858	1	0.0111	13.31996559	1199.9969	1439992.56	-0.0068
15			sums	12	0.1623	199.81483877	10499.9876	13454977.32	0.0000
16							110249739.6	sumDA(obs) ${ }^{\wedge} 2$	
17	DA	published							
18	DH	observed			scale	0.00001354	13.5	ppm	
19	V(m)	variance			constant	0.00167330	0.0017	meters	
20									

Certificate of Calibration no. 9813

For: Maryland Department of Transportation Invar Staff Leica no. 28793

Face-Value	Observations
(mm)	(mm)

118.4625	118.44
306.7875	306.77
501.1875	501.17
695.5875	695.57
395.0875	398.07
1090.4625	1090.45
1307.1375	1307.12
1495.4525	1495.44
1691.8375	1691.87
1890.3375	1890.32
2094.8625	2094.84
2287.2375	2287.22
2507.9625	2507.94
2694.2625	2694.24
2917.9125	2916.99

Notes:
Tenperatire of callozation: $20^{\circ} \pm 0.7^{\circ} \mathrm{C}$
Instrumert usod for control: Itierferometer Hewlen-Packand model S508A (s.i. 2230A00169) Resolution of interferometer: 0.00001 mm .
Evimed precision of nerults: 0.022 mes
Novembee 261993
Direowor of Laberatocy of Metrology and Goodeny
\square

Two-Plane Method of Interpolating Heights (Problem 8.3)

- We can approximate the shift at an unknown point (when observations are unavailable) using least squares methods.
- Need minimum of four points with known elevations in both vertical datums.
- Need plane coordinates for all points.
- Calculates rotation angles in both planes ($\mathrm{N}-\mathrm{S}$ and $\mathrm{E}-\mathrm{W}$) as well as the vertical shift.
A Matlab-based solution is provided on the class web page.

Problem 8.3 in text

Benchmark	NGVD 29 Height ft.	NAVD 88 m	Northing	Easting
Q 547	4088.82	1247.360	60,320	$1,395,020$
A 15	4181.56	1275.636	60,560	$1,399,870$
AIRPORT 2	4085.32	1246.314	56,300	$1,397,560$
NORTH BASE	4191.80	1278.748	57,867	$1,401,028$
T 547	4104.04	Unknown	58,670	$1,397,840$

Function model

- (NAVD88 ${ }_{i}-$ NGVD29 $\left.{ }_{i}\right)=\alpha_{E}\left(N_{i}-N_{0}\right)+\alpha_{N}\left(E_{i}-E_{0}\right)+t_{Z}$
- Where we compute the following (all values in meters):
- NAVD88, ${ }_{i}$ NGVD29 ${ }_{i}=$ difference in heights
$-N_{i}-N_{0}=$ is difference of each North coordinate of known points from centroid
$-E_{i}-E_{0}=$ is difference of each East coordinate of known points from centroid

Solving Problem

- Determine the mean value (centroid) for N and E coordinates (use known points only) - N_{0} : $58762 \mathrm{E}_{0}: 1398370$ (wrong in text)
- Determine NAVD 88 - NGVD 29 for points with values in both systems. Note signs!

Δ Q 547	$=1.085$
\triangle A 15	$=1.094$
\triangle AIRPORT 2:	$=1.106$
Δ NORTH BASE	$=1.085$

Compute differences from centroid

Station	Difference in N	Difference in E
Q 547	1558	-3350
A 15	1798	1500
AIRPORT 2	-2462	-810
NORTH BASE	-895	2658

Compute parameters

- B the design matrix consists of three columns:
- Col.1: difference in Northings from centroid
- Col.2: difference in Eastings from centroid
- Col.3: all ones
- F the observation matrix
- Vector of height differences
- Parameters are computed by the method of least squares: $\left(B^{\top} B\right)^{-1} B^{\top} f$

$$
\text { Datum Shift }{ }_{i}=\left(\text { NAVD88 }_{i}-\text { NGVD29 }_{i}\right)=\alpha_{E}\left(N_{i}-N_{0}\right)+\alpha_{N}\left(E_{i}-E_{0}\right)+t_{z}
$$

One equation may be written for each of the four known benchmarks (after simplifying):
Q547: $\quad 1.085 m=\alpha_{E}(1558)+\alpha_{N}(-3350)+t_{z}$
A15: $\quad 1.094 m=\alpha_{E}(1798)+\alpha_{N}(1501)+t_{z}$
AIRPORT 2: $\quad 1.106 \mathrm{~m}=\alpha_{\mathrm{E}}(-2462)+\alpha_{N}(-810)+t_{z}$
NORTH BASE: $1.085 \mathrm{~m}=\alpha_{E}(-895)+\alpha_{N}(2659)+t_{z}$
The above equations are of the form $\mathbf{f}=\mathbf{B} \Delta+\mathbf{v}$ where \mathbf{f} represents the vector of observations, B represents the matrix of parameter coefficients, Δ represents the vector of parameters and \mathbf{v} represents the vector of observation residuals. The parameters for this system of equations may be estimated using unweighted least squares by the adjustment of indirect observations (Mikhail, 1976). The vector of parameters is computed using $\Delta=\left(\mathbf{B}^{\top} \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{f}$.
$\mathbf{B}=\left[\begin{array}{ccc}1558 & -3350 & 1 \\ 1798 & 1501 & 1 \\ -2462 & -810 & 1 \\ -895 & 2659 & 1\end{array}\right] \quad \mathbf{f}=\left[\begin{array}{c}1.085 \\ 1.094 \\ 1.106 \\ 1.085\end{array}\right]$
$\Delta=\left[\begin{array}{c}\alpha_{E} \\ \alpha_{N} \\ t_{\mathrm{Z}}\end{array}\right]=\left(\mathbf{B}^{\mathrm{T}} \mathbf{B}\right)^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{f}=\left[\begin{array}{c}-2.96861 \times 10^{-6} \text { radians } \\ -5.72027 \times 10^{-7} \text { radians } \\ 1.092 \mathrm{~m}\end{array}\right]$

T547: Datum Shift $=\left(-2.96861 \times 10^{-6}\right)(-92)+\left(-5.72027 \times 10^{-7}\right)(-530)+1.092=$ 1.093 m .
$\therefore \mathrm{H}_{\text {T547 }}=4104.04 \mathrm{US} \mathrm{ft}+1.093 \mathrm{~m}=1250.914 \mathrm{~m}+1.093 \mathrm{~m}=1252.006 \mathrm{~m}$.
The accuracy of this value may be estimated by evaluation of the vector of observation residuals computed using $\mathbf{v}=\mathbf{f}-\mathbf{B} \Delta$. This vector describes the "fit" between the planes representing the NAVD 88 datum and the NGVD 29 datum.

Applying parameters

- Our matrix inversion solved for rotations in E and N as well as shift in height.
- Compute the shift at our location using our functional model: $\alpha_{E}\left(N_{i}-N_{0}\right)+\alpha_{N}\left(E_{i}-E_{0}\right)+t_{z}$
- Result is the magnitude of the shift.
- We calculate the new height by algebraically adding the shift to the height in the old system.

